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Abstract

Incremental four-dimensional variational data assimilation is a method
that solves the assimilation problem by minimizing a sequence of approximate
‘inner loop’ functions. In any implementation of such a scheme a decision must
be made as to how accurately to solve each of the inner minimization prob-
lems. In this paper we apply theory that we have recently developed to derive
a new stopping criterion for the inner loop minimizations, that guarantees
convergence of the outer loops. This new criterion is shown to give improved

convergence compared to other commonly used inner loop stopping criteria.
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1 Introduction

Four-dimensional variational data assimilation (4D-Var) is a method to estimate
the model trajectory most consistent with the available observational data over a
particular time window through the minimization of a nonlinear cost function. A
major advantage of this technique over previously used asssimilation methods is
that the dynamical forecasting model is used as a constraint on the assimilation.
Early studies showed how this allows a 4D-Var assimilation to infer information
from observations in a dynamically consistent way (for example, Courtier and Tala-
grand 1987, Thépaut and Courtier 1991, Rabier and Courtier 1992, Thépaut et al.
1993). However, in its full, nonlinear formulation 4D-Var is very computationally
demanding and so methods of simplification are needed before operational imple-
mentation is possible. The most successful of these used currently is the incremental
approach (Courtier et al., 1994), which has recently been shown to be equivalent
to using a Gauss-Newton iteration method to minimize the nonlinear cost function
(Lawless et al. 2005a, 2005b). Such a method has been implemented operationally
for several weather and ocean forecasting systems (see, for example, Rabier et al.
2000, Weaver et al 2003) and is under development for others. In the incremental
approach the minimization of the 4D-Var nonlinear cost function is replaced by a
series of minimizations of convex quadratic cost functions constrained by a linear
model. Each of these quadratic cost functions is minimized using an inner iteration
or ‘inner loop’ and the solution is then used to update the nonlinear model trajec-
tory in an ‘outer loop’. These outer loop trajectories can then be used to define new
quadratic cost functions and so the method cycles through several outer loops, each
of which requires the minimization of an inner loop cost function. An advantage
of this method is that it allows the inner loop cost functions to be simplified, for
example by solving the problem at a lower spatial resolution, and this makes the
4D-Var problem tractable for operational use.

One problem with the incremental 4D-Var method is deciding how many iter-
ations to perform in each inner loop minimization. It is clear that the inner loop
problem must be solved to sufficient accuracy to ensure an accurate update to the

nonlinear trajectory. However, we may expect that since the inner loop cost func-



tion is an approximation to the full nonlinear cost function, then it is not worth
solving it too accurately. In a study using a model of barotropic flow, Laroche and
Gautier (1998) found that it was preferable to choose a lower number of inner it-
erations and update the outer loop trajectory more often. Hence it is important
to choose carefully the stopping criterion for the inner loop minimization. In many
operational implementations of incremental 4D-Var the inner loop has been stopped
using criteria based on a fixed number of iterations or on the norm of the gradient.

In this paper we propose a new stopping criterion for the inner loop minimiza-
tion, based on the relative change in the inner loop gradient. The theory for this
criterion arises from our recent theoretical work on the convergence of approximate
Gauss-Newton iterations (Gratton et al. 2004). Preliminary application of these
results showed a potential benefit from using such a stopping criterion within an
incremental 4D-Var system (Lawless et al., 2005c). Here we present the theoretical
basis for this criterion and show how it can be used to guarantee the convergence
of the outer loops. Numerical experiments are presented to illustrate how a stop-
ping criterion based on this theory leads to faster and smoother convergence of the
4D-Var assimilation.

The paper is arranged as follows. In Section 2 we present the incremental 4D-Var
algorithm and review its relationship to the Gauss-Newton iteration. In Section 3 we
discuss different stopping criteria for the inner loop minimization and show how the
theory of Section 2 naturally leads to a particular choice. The subsequent sections
present a series of numerical experiments which illustrate the advantages of this new
criterion under different conditions. The model and assimilation system is described
in Section 4. In Section 5 we compare the performance of the new stopping criterion
to other commonly used criteria. Section 6 illustrates how the tolerance of the
new criterion may be tuned to improve the convergence of incremental 4D-Var. In
Section 7 we examine the performance of the new criterion when the inner loop is at
a lower spatial resolution than the outer loop. Finally, in Section 8, we summarize

our findings and highlight the implications for operational assimilation systems.



2 Mathematical formulation of incremental 4D-

Var

2.1 Incremental 4D-Var

In the full nonlinear formulation of 4D-Var we aim to find the initial model state x;

that minimizes the cost function

Tlxa] = 5(x0 — %) "By (xo — %) + 5 S (Hif] — 0 "R (Hlx] - y) (1)

=0

subject to satisfying the discrete nonlinear forecast model
X; = S(ti,to,XO). (2)

In this expression x’ is the background field with error covariance matrix By, y? are
the observations at time ¢;, with error covariance matrices R; and H; is the obser-
vation operator which maps the field from model space to observation space. The
operator S(t;,to,Xo) represents the solution operator of the nonlinear model, which
maps the initial state xy at time ¢y to the state at time ¢;. The incremental formula-
tion of 4D-Var, introduced by Courtier et al. (1994), replaces a direct minimization
of (1) with a series of minimizations of linearly constrained cost functions, each of
which is solved for an increment to the current estimate. This gives the following

algorithm:

e Set first guess x\V = Xp.

e Repeat for k=0,..., K —1

— Minimize
FOX) = S0 3 = x OBy (5~ ! x )
£ - R Es ) @
=0
with
d" = y?— Hx®), (4)
(5x§k) = L(tz,to,x(k))éxgk), (5)



where Hj; is the linearization of the observation operator H; around the
(k)

state x; at time ¢; and L(t;, %5, x®)) is the solution operator of a linear
model linearized around the nonlinear model trajectory.

— Update x(()kﬂ) = x(()k) + 5x(()k)

(K)

e Set analysis x* = x;

For an exact method the linear model L(t;, to, x(k)) is equal to the linearization of the
discrete nonlinear model S(t;,ty,%o), but in practice an approximate linearization
is often used (for example, Lorenc et al. 2000, Mahfouf and Rabier 2000). It was
shown by Lawless et al. (2005a, 2005b) that incremental 4D-Var with an exact
tangent linear model is equivalent to a Gauss-Newton method applied to minimize

the nonlinear cost function (1). We now review this equivalence.

2.2 Gauss-Newton algorithm

The Gauss-Newton method is an approximation to a Newton iteration, in which the
second order terms of the Hessian are neglected (Dennis and Schnabel, 1996). To

illustrate this we consider a general nonlinear least squares problem
, 1 s 1. o
min 7 (x) = 5 || £6<) [3= 50 "E(x), (©)
with x € R", which we assume to have an isolated local minimum x*. We write
VI(x) = JH(x), (7)
VI (x) = J'T+Q(x), (8)

where J is the Jacobian of f(x) and Q(x) are the second order derivative terms.

Then the Gauss-Newton iteration for minimizing (6) is given by

Solve for ox®):  (FJ(x®)TI(x®))ox®) = —FJ(x®)Tf(x*)), (9)

Update: x ) = x®) 4 gx(®), (10)

We note that for large systems it may be impossible to solve (9) directly. In such
case the solution 0x*) may be found by an ‘inner’ minimization of the function

= 1
T (0x®) = = | I®)ox™ + £(x©) |13 . (11)



To see the link with incremental 4D-Var, we note that (1) can be written in the

form (6) by putting

B; /% (%o — x)
~1/2 o
£(x,) = R, (HO:[XO] ¥6) ' (12)

R, (Hy[xa] — ¥3)

Then, as was shown by Lawless et al. (2005a, 2005b), if we apply the Gauss-Newton
iteration to the nonlinear cost function (1), the step given by (11) is equivalent to
the minimization of the inner loop cost function (3). Thus incremental 4D-Var is
equivalent to a Gauss-Newton iteration and we can use the theory for the Gauss-

Newton method to analyse the behaviour of incremental 4D-Var.

2.3 The truncated algorithm

In practice the inner loop cost function of incremental 4D-Var is minimized using an
iterative procedure, such as a conjugate gradient method. Such minimization meth-
ods employ a stopping criterion to determine when the solution has been found
to sufficient accuracy. Hence the minimum of the inner cost function is not found
exactly, but only to within the degree of accuracy determined by the stopping cri-
terion. In the context of the Gauss-Newton algorithm this can be considered as a
method in which the step (9) of the algorithm is solved inexactly. Thus we obtain
the truncated Gauss-Newton (TGN) algorithm

Solve for 6x*):  (F(x®)TT(x*)))ox® = —[J(x®)TF(x®) + 1)), (13)

Update: xBHD) = x®) 4 5x®) (14)

where r*) is the residual arising from the premature termination of the inner loop
minimization. Convergence of the TGN algorithm is guaranteed by the following

theorem, first stated in Lawless et al. (2005b) and proved in Gratton et al. (2004):

Theorem 1 Assume that B < 1 and that on each iteration the Gauss-Newton

method is truncated with
| 2®) o< By || I(xP)TE(xE)) ||, (15)
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where

A= 1| T (xM)I(x5)) Q™) |l
T4 || (IT(x®)I (x0)) 1 QE) |2

Then there exists n > 0 such that, if | xo — x* ||2< 7, the truncated Gauss-Newton

Br < (16)

iteration (TGN) converges to the solution x* of the nonlinear least squares problem

(6).

Proof: See Gratton et al. (2004). O
In the next section we demonstrate how this theorem may be used to determine a

suitable stopping criterion for the inner loop of incremental 4D-Var.

3 Defining a suitable stopping criterion

As stated in the introduction, it is important to choose carefully the stopping cri-
terion for the inner loop minimization of incremental 4D-Var. If too few inner
iterations are performed, then the outer loop iterations may not converge to the so-
lution of the original problem. Although this may not appear to be a problem if we
are not running many outer loops, it does mean that with too few inner iterations
the system may diverge and the final analysis may be further from the truth than
the first guess. Hence even in the case where only a few outer loops are performed,
adequate minimization of the inner loop is necessary. However, we also wish to
avoid performing too many iterations on the inner loop. If the current outer iterate
x(¥) ig far from the true solution, then iteration of the inner minimization to too
high an accuracy may result in extra computational work which does not lead to
increased accuracy in the outer loops. We discuss some common ways in which the
inner loop minimization is stopped and then use the theory of Section 2 to propose

a new stopping criterion.

3.1 Choice of criterion

Since we know that the gradient of a function is zero at its minimum, a natural
method for stopping the inner iteration is to stop when the norm of the gradient of

the inner loop cost function falls below a specified tolerance. If we use € to denote



a user-set tolerance and use subscript m to denote the iteration count of the inner

loop, then we can write this criterion as

(C1) Absolute norm of gradient

I VTG lla< e (17)

m

An alternative stopping criterion from optimization theory is to stop when the
relative change in the inner loop cost function itself is less than a given tolerance
(Gill et al. 1986, p.306). Such a measure ensures that extra iterations are not
performed if they will not significantly decrease the value of the cost function. We

can write such a criterion

(C2) Relative change in function
=(k =(k =(k
T = T8 < e+ TW). (18)

Often other criteria are chosen for practical reasons, for example a fixed number
of inner iterations may be used to stop the inner loop (Rabier et al. 1998, Weaver
et al., 2003).

We now derive a new stopping criterion for incremental 4D-Var using the theory
for truncated Gauss-Newton methods presented in the previous section. We suppose
that a total of M inner iterations are performed in the inner minimization, after
which the solution to the inner problem (13) is given by (5XE’§V)I) with residual rE’;/)I).
Then Theorem 1 proves convergence of the truncated Gauss-Newton method if the

ratio ®
A
T I(x®)TE(x®) |

is bounded, where (16) provides the bound. Thus a natural stopping criterion is to

R

(19)

stop the inner iteration when this ratio is less than a given tolerance. We examine
this formula in more detail to understand how we may calculate it in practice.
Firstly we note that the gradient of the general inner loop cost function (11) at

the point (5X§’;\/)I) is given by

Vj(k)(CSXEﬁ)) _ (J(x(k))TJ(x(k)))csxﬁ% + J(x(k))Tf(X(k))- (20)



A comparison of this with (13) reveals that rga) = Vj(’“)(dxgﬁ})) and so the norm
I r(k)(éxg%) |2 in the numerator of R is simply the final norm of the gradient of
the inner loop cost function. Whereas criterion (C1) stops the iteration based on
the absolute norm of this gradient, Theorem 1 implies that the inner loop should be
stopped on the size of this norm relative to || J(x®*))7f(x*)) ||o. Furthermore, from
(7) we see that the norm of J(x*))Tf(x*)) is identical to the norm of the gradient of
the outer loop cost function evaluated at x*). Hence R is simply the relative sizes
of the gradients of the inner loop and outer loop cost functions. The theorem for
the convergence of the truncated Gauss-Newton algorithm indicates that this ratio
should form the basis of the stopping criterion for the inner loop minimization.

We can simplify this further by noting that where dx = 0, we have V.7 (x*)) =
VJ®) . Since, within an incremental 4D-Var system, we assume that the first guess
to 0x is zero at the start of each inner loop, then V.7 (x®)) on each outer loop is
equal to the value of Vj((ok)) at the start of the inner minimization. Thus R can be
calculated using gradient information from only the inner loop cost function. This
implies a stopping criterion which is a simple relative criterion on the norm of the

inner loop gradient. We can write such a criterion in the form

(C3) Relative change in gradient

>k
VT8 NIz

e L (21)
I VIS 2

where the subscripts indicate the index of the inner loop iteration. From the theory
for the convergence of the truncated Gauss-Newton method it appears more natural
to use this relative stopping criterion on the norm of the inner loop gradient, rather
than criteria (C1) or (C2). Provided that we choose € < miny f, with £, bounded

as in (16), then Theorem 1 ensures the convergence of incremental 4D-Var using

stopping criterion (C3).

3.2 Choice of tolerance

Besides determining the type of stopping criterion to use, we must also decide what

value of the tolerance € to choose. If we use the relative change in the inner loop
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gradient as the criterion, then a suitable tolerance is provided by the right hand side
of (16). However in practice this bound will be hard to calculate. The terms Q(x)
are the second order terms of the Hessian and these include the second derivative
terms of the nonlinear model, which cannot be calculated easily for a complex fore-
cast model. Nevertheless it may be possible to tune the tolerance of the assimilation
system using a few experiments. To gain insight into how to do this, we note that
the bound in (16) is essentially a measure of the nonlinearity of the problem. The
norm || (J(x*)TJ(x®))71Q(x®) ||, measures the size of the second order terms of
the Hessian relative to the first order terms. The more nonlinear the problem, the
higher this norm will be. This will lead to a smaller bound on the right hand side of
(16), implying that the inner loop must be solved more accurately. If we assume that
within the assimilation system we have a similar degree of nonlinearity for a given
time window, then we expect that this bound will not vary too widely and simple ex-
periments should be sufficient to provide a suitable tolerance. We now demonstrate

the application of this theory in some idealised assimilation experiments.

4 Experimental system

4.1 Numerical model and assimilation system

The model we use for this study is that described in Lawless et al. (2003). We
consider a one-dimensional shallow water model for flow over an obstacle in the
absence of rotation. The continuous system is described by a momentum equation

and a mass-continuity equation,

Du % B oh

- - _g— 22
Dt + ox Ioz (22)
D(In ¢) ou
27— 2
Dt + ox 0, (23)
with
D 0 0
D_t = a + U% (24)

In these equations h = h(z) is the height of the bottom orography, u is the velocity
of the fluid and ¢ = gh is the geopotential, where ¢ is the gravitational constant
and h > 0 the depth of the fluid above the orography. The problem is defined on

11



the domain z € [0, L], with periodic boundary conditions, and we let ¢ € [0,T]. The
model is discretized using a semi-implicit semi-Lagrangian scheme, as described in
Lawless et al. (2003).

An incremental 4D-Var assimilation scheme is set up for this model, as described
in Section 2.1. For the numerical experiments reported in this paper, no background
term is included and sufficient observations are made available to determine a unique
solution. Further details of the assimilation scheme can be found in Lawless et al.
(2005a). In that study two different linearizations of the nonlinear model were
compared in assimilation experiments. Here we follow the standard method and use
the exact tangent linear model. The inner loop cost function is minimized using
a conjugate gradient method. For this study we compare the three different inner

loop stopping criteria introduced in Section 3.

4.2 Details of experiments

Identical twin experiments are used to compare the different stopping criteria. The
model is set up using a periodic domain with 200 grid points, with a spacing of
Az = 0.01 m, so that € [0 m,2 m]. An orography is defined in the centre of the
domain by

2

h(z) = he (1 - m—) for 0< |2 <a, (25)

a2
and h(x) = 0 otherwise, with h, = 0.05 m and @ = 40Az = 0.4 m. The gravitational
constant ¢ is set to 10 ms~2 and the model time step At is 9.2 x 102 s.

For the assimilation experiments we use an assimilation window of 50 time steps
unless stated otherwise. The initial conditions at time ¢ = 0 are the same as those
of Case IT of Lawless et al. (2005a). This is a highly nonlinear test case in which a
shock solution is formed in both the v and ¢ fields. The true solution at the start
and end of the assimilation window is shown in Figure 1. The first guess field is
taken to be the truth with a phase error of 0.5 m. The setting of the convergence
criteria for the inner loop are detailed in the description of each experiment. For
all experiments the outer loops are stopped when the absolute norm of the gradient
of the updated outer loop cost function is less than the value of € specified for the

inner loop criterion. The number of outer loops is limited to a maximum of 12.

12
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Figure 1: True solution for (a) u and (b) ¢ at time t = 0 and for (c) v and (d) ¢

after 50 time steps.
5 Comparison of different stopping criteria

In this section we compare the three stopping criteria introduced in Section 3. For
these experiments the convergence tolerance € is set to a value of 0.1. This is larger
than is usually used in practice, but is chosen to provide a clear comparison without

too many inner iterations.

5.1 Perfect observations

We begin with an experiment in which we have perfect observations of both « and ¢
on every time step and at every spatial point. The convergence of the cost function
and its gradient is shown in Figure 2 for each of the three different convergence
criteria. In this figure and other convergence plots in this paper, the values are
plotted for each inner iteration and the value before the first inner iteration in each
outer loop (when the perturbation is zero) is also shown. Since the inner and outer
loop cost functions are identical for a zero perturbation, the function and gradient
values before the inner loops are equal to the outer loop values. In the figures these
iterates which correspond to the start of a new outer loop are indicated by circles.
The number of iterations shown is therefore the total number of outer and inner

loops.
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We first consider the relative computational costs of the three experiments, not-
ing that for this system, with the inner loop at the same spatial resolution as the
outer loop, the inner and outer iterations are of comparable cost. We see from Fig-
ure 2 that the experiment using criterion (C1) takes the most iterations to converge.
After the first few iterations of each inner loop the function value remains almost
constant, while the gradient norm continues to decrease. Thus many inner itera-
tions are performed which have little effect on reducing the inner loop cost function.
On the other hand, when using the new stopping criterion (C3), the assimilation
converges in many fewer iterations. In the initial outer loops the inner loop is trun-
cated earlier than with criterion (C1). This has the effect of avoiding plateaus in
the convergence of the cost function and its overall convergence is faster.

We note that the convergence as measured by the norm of the inner loop gradi-
ent appears to be slowed down initially when using criterion (C3) instead of (C1).
However, the gradient convergence is much smoother with criterion (C3), whereas
with criterion (C1) large jumps are observed in the gradient at the start of each
new outer loop. Moreover, if we fix attention on the iterations corresponding to
new outer loops (indicated by the circles on the figure), we see that the outer loop
gradient is in fact converging faster with criterion (C3) than with criterion (C1).
This indicates that when using criterion (C1), although the inner loop cost function
is being minimized more accurately, this cost function is not a good approximation
to the nonlinear problem. Thus, when the approximation is refined by performing
a new outer loop and redefining the inner loop cost function, the gradient norm
increases again by two orders of magnitude. This does not occur in the assimilation
using stopping criterion (C3), which does not solve the approximate problem too ac-
curately and so avoids large jumps in the gradient. Hence the gradient convergence
also indicates criterion (C3) as the better option to choose.

For the experiment using criterion (C2), the convergence is initially very similar
to that using criterion (C3), but after approximately 12 iterations, the convergence
slows down. After this point the stopping criterion causes the inner loop to be
truncated too soon, before much progress can be made in reducing the cost function

and its gradient. In fact, for this experiment, the maximum number of 12 outer
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Figure 2: Convergence of (a) cost function and (b) gradient for stopping criteria
(C1) (solid line), (C2) (dotted line) and (C3) (dashed line). The circles indicate a

new outer loop iteration.

loops is used, but the final values of the cost function and gradient are higher than
in the other two experiments.

Further experiments were performed using different values of the tolerance € with
criteria (C1) and (C2), to see whether the convergence could be improved (figures
not shown). For all cases tested, however, the convergence was still slower than the
experiment using criterion (C3) with ¢ = 0.1. Thus criterion (C3) appears to show
the best performance, giving convergence in the least number of iterations and a

smooth convergence of both the cost function and its gradient.

5.2 Imperfect observations

To understand how well this conclusion holds with imperfect observations, we add
random Gaussian noise to the observations of both v and ¢, with a standard devia-

tion of 5% of the mean value of the variable. The convergence for all three criteria is
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Figure 3: As Figure 2, but for imperfect observations.

shown in Figure 3. In this case the cost function itself has a large decrease initially,
with subsequent iterations slowly providing further reduction. For this case perhaps
the convergence of the gradient norm is more revealing. Again we find that the rela-
tive gradient criterion (C3) provides the fastest and smoothest overall convergence.
As for the case with perfect observations, with criterion (C1) too many iterations
are performed in the initial inner loops, which gives a large decrease in the gradient
of the inner loop cost function, but an almost stagnated convergence of the cost
function itself. Instead, when stopping criterion (C3) is used, the minimizations
of the initial inner loop cost functions are solved less accurately, so that a faster
overall convergence of the cost function and a smoother convergence of the gradient
are obtained. With stopping criterion (C2) the assimilation again shows good con-
vergence initially, but then convergence slows down and, as before, the maximum
number of outer loops is performed. By comparison, the experiments with criteria
(C1) and (C3) use 5 and 6 outer loops respectively. Thus the experiments using
imperfect observations show the same qualitative behaviour as those using perfect

observations, with the new stopping criterion (C3) showing the best convergence

16



with the least amount of work.

5.3 Premature termination of outer loops

In practical data assimilation the outer loops are not usually run to complete conver-
gence, so it is important to understand the effect of the different inner loop stopping
criteria where the outer loops are stopped prematurely. For example, if limited
computing resources are available, then it may be necessary to stop the assimilation
after a given amount of computation. If the inner and outer iterations are of similar
cost, this corresponds to stopping after a fixed number of iterations. From Figures 2
and 3 we see that after the first few iterations the assimilation using stopping cri-
terion (C3) always gives a lower value of the cost function than the assimilations
using the other criteria. It is possible in such a case that the inner-loop gradient
norm will be lowest in the assimilation using stopping criterion (C1), for example if
the experiment with imperfect observations is stopped after 10 iterations. However,
when the solution to the inner problem is added onto the linearization state to give a
new outer iterate, the gradient of the nonlinear cost function may be very different.
In fact, we see that if we choose to stop the assimilation after a fixed number of
outer loops (as is often done in practice), then not only is the cost function highest
for the experiment using criterion (C1), but the gradient norm is also highest for

this experiment.

5.4 Summary

From the experiments in this section the new stopping criterion (C3) is seen to be the
most useful of the three convergence criteria proposed. It avoids the performance
of excessive inner iterations, while providing faster convergence of the outer loop
cost function and gradient. This conclusion seems to hold whether the outer loops
are converged or whether they are stopped after a fixed amount of computational
work. Hence the numerical experiments support the conclusion from the Gauss-
Newton theory that a relative gradient stopping criterion is a more natural way
of stopping the inner loop in incremental 4D-Var. However, the usefulness of this

criterion depends on a good choice of the tolerance. We consider this question in
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the next section.

6 Choosing the value for the tolerance

From Theorem 1 we have a clear way of defining the tolerance for stopping criterion
(C3), given by the right hand side of (16). However, it is unlikely that this bound
could ever be calculated, except for a very simple model, since the second order
terms ()(x) require the second derivative of the nonlinear model with respect to
the state variables. In this section we consider whether a suitable tolerance can be

found from a sample of a few experiments.

6.1 Perfect observations

We begin by running again the experiment with perfect observations from Section 5,
where we use stopping criterion (C3) with different tolerances €. In Figure 4 we show
the convergence of the cost function and its gradient for values of inner loop tolerance
e = 0.01, 0.1, 0.5 and 0.9. The number of outer loops completed for each of these
experiments is 5, 5, 6 and 12. We find that the best overall convergence is given when
€ is chosen to be 0.1 or 0.5. If the tolerance is chosen to be too small, then excessive
inner iterations are performed and the convergence rate is worse. This can be seen
from the convergence when ¢ = 0.01. In this case, although the number of outer
loops is the same as for the experiment with ¢ = 0.1, the total number of iterations
performed is much higher. On the other hand, if the tolerance is chosen to be too
large, then the inner loop may not be solved accurately enough. This can lead to too
many outer loops being performed, with the possibility that they do not converge.
An example of this is seen in the experiment with ¢ = 0.9, which shows a very slow
convergence rate, even though 12 outer loops are performed. However, it is clear
that from a few experiments a tolerance can be chosen which gives a good rate of
convergence. For this system the experiments performed indicate that the optimal
value of the tolerance is of the order 0.1-0.5. We now investigate whether, having
found a tolerance for a given system, this value will also give good convergence with

different data.
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Figure 4: Convergence of (a) cost function and (b) gradient for experiment with

perfect observations using criterion (C3). The different curves are for ¢ = 0.01 (dot-

dashed), 0.1 (dotted), 0.5 (dashed) and 0.9 (solid). The circles indicate a new outer

loop iteration.
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Figure 5: Convergence of gradient for experiment with imperfect observations with

5% standard deviation. The different curves are for e = 0.01 (dot-dashed), 0.1 (dot-

ted) and 0.5 (dashed). The circles indicate a new outer loop iteration.

6.2 Imperfect observations

It is important to know if a tolerance chosen from a few experiments can provide
good convergence when we have different levels of noise on the observations. To
understand this we run the assimilation again with random, Gaussian noise added
to the observations, firstly with a standard deviation of 5% of the mean values of
the fields, then with a standard deviation of 10%. For these cases we find that the
initial convergence is very much slowed down for ¢ = 0.9 and so we compare only
values of € = 0.01,0.1 and 0.5. The plots for the convergence of the gradients in
these two cases are shown in Figures 5 and 6. For both experiments we again find
that when € = 0.01 the gradient is slow to converge and an excessive number of
inner iterations are performed. In the figures only the first 60 iterations are shown
for clarity, but the total number reaches 85 for the 5% error case and 198 for the
10% error case. The curves for values of € = 0.1 or 0.5 show good convergence.

If we compare these results with the perfect observation case, we see that choosing
a very low value of € leads to too many iterations, whether or not there is error on
the observations. For higher values of ¢ we can achieve fast overall convergence,
provided that the tolerance is not chosen to be too high. A comparison of the
different experiments indicates that a smaller value of the tolerance may be needed

when there is more noise on the observations. In the experiments performed larger
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Figure 6: As Figure 5, but for imperfect observations with 10% standard deviation.

tolerances were permitted with perfect observations than for imperfect observations.
Nevertheless, the results do indicate that by performing a few experiments for a
given system, a suitable value of the tolerance may be chosen which reduces the
total number of iterations while still ensuring convergence. Provided that the lower
value of € which gives good convergence is chosen, this value may be used when the

noise on the observations changes.

7 Low resolution inner loop

In practical data assimilation the inner loop of incremental 4D-Var is often run at
a lower spatial resolution than the nonlinear model used to calculate the innovation
vectors d;. Although Theorem 1 does not then apply directly, other theorems we
have proved for the Gauss-Newton method with inexact Jacobians (Gratton et al.
2004) indicate that the relative gradient criterion (C3) is a more natural stopping
criterion for this case also. In order to investigate this, we run an assimilation exper-
iment as before with a 50 time step assimilation window and perfect observations of
all variables at each time step, but with the inner loop at half the spatial resolution
of the outer loop. In Figure 7 we show the convergence of the cost function using
the different stopping criteria with a tolerance of € = 0.1. As for the case with a full
resolution inner loop, we find that using criterion (C3) gives a much faster overall
convergence compared to using criterion (C1). Again we find that the convergence

using criterion (C2) follows that of (C3) initially, but then slows down. The relative
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Figure 7: Convergence of cost function for a low resolution inner loop. The different
curves are for stopping criteria (C1) (solid line), (C2) (dotted line) and (C3) (dashed

line). The circles indicate a new outer loop iteration.

function criterion (C2) stops the inner loop too soon, which leads to the maximum
number of outer loops being performed.

We repeat the experiment with imperfect observations, using random Gaussian
noise with a standard deviation of 5% of the mean value of the variables. The
convergence of the cost function and its gradient is shown in Figure 8. We see that
the cost function behaves in a similar way to the case for a full resolution inner loop,
shown in Figure 3, with an initial large decrease followed by further small reductions.
The convergence of the gradient again provides a clearer comparison. We see the
same pattern of behaviour as with the other experiments in this study, with criterion
(C3) providing a much faster and smoother convergence of the gradient compared
to the other two criteria. Further testing of criterion (C3) with different levels of
tolerance also shows the same qualitative behaviour as with a full resolution inner
loop, with a tolerance of € = 0.1 providing a good rate of convergence. Thus the
new stopping criterion we have proposed appears to be suitable even when the inner

loop resolution is reduced, whether perfect or imperfect observations are used.

8 Conclusion

The choice of stopping criterion for the inner loop of an incremental 4D-Var system

can greatly influence its overall performance. If the inner loop is stopped too early
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Figure 8: Convergence of (a) cost function and (b) gradient for a low resolution inner
loop with imperfect observations. The different curves are for stopping criteria (C1)

(solid line), (C2) (dotted line) and (C3) (dashed line). The circles indicate a new

outer loop iteration.
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then the final solution may not be close to the minimum of the nonlinear cost
function. However, if the inner minimization is solved to too great an accuracy, much
computational effort is wasted for very little gain. In this study we have proposed
a new criterion for stopping the inner loop, which uses the relative change in the
gradient of the inner loop cost function. This criterion is founded on our earlier
work which analysed theoretically the incremental 4D-Var algorithm (Gratton et
al. 2004). Tt is designed to guarantee convergence of the outer loops, with an
appropriately chosen tolerance, while avoiding excessive iterations within the inner
loop minimizations.

In data assimilation experiments using an idealised model we have shown how
this new criterion provides a faster and smoother convergence than other criteria
which are commonly used. Furthermore, we have demonstrated how the tolerance
may be tuned with a few experiments to give good convergence in different situations,
such as having different levels of noise on the observations. The criterion has also
been shown to give good results when the inner loop is at a lower spatial resolution
than the outer loop. We therefore conclude that a relative gradient stopping criterion

is a very appropriate way to stop the inner loop of an incremental 4D-Var system.
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