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Abstract

A framework is presented for the construction of multidimensional slope

limiting operators for two�dimensional MUSCL�type �nite volume schemes

on triangular grids� A major component of this new viewpoint is the de��

nition of multidimensional �maximum principle regions�� These are de�ned

by local constraints on the linear reconstruction of the solution which guar�

antee that an appropriate maximum principle is satis�ed� This facilitates

both the construction of new schemes and the improvement of existing lim�

iters� It is the latter which constitutes the bulk of this paper� Numerical

results are presented for the scalar advection equation and for a nonlinear

system� the shallow water equations� The extension to systems is carried

out using Roe�s approximate Riemann solver� All the techniques presented

are readily generalised to three dimensions�
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� Introduction

In one dimension� upwind �nite volume schemes have developed into reliable

tools for producing accurate numerical approximations of hyperbolic systems of

partial di�erential equations� In higher dimensions it has proved di�cult to at

tain the same degree of robustness and accuracy with simple extensions of these

onedimensional techniques� particularly on unstructured grids� This is in part

because the additional multidimensional nature is not exploited su�ciently� As

a consequence� a great deal of research has been carried out into the generation

of genuinely multidimensional� high order schemes which retain the properties of

those methods which have had such success in one dimension�

High resolution schemes for conservation laws in one dimension are usually

constructed using some form of TVD �Total Variation Diminishing� limiter �cf�

���� ���� so that high order accuracy can be achieved whilst avoiding unphysical

oscillations in the solution� One commonly used approach is the slope limiting

�MUSCL� technique of van Leer ����� in which the limiter is applied in a geomet

ric manner� to the gradients of a piecewise linear reconstruction of the solution�

to create a monotone scheme� In more than one dimension the generalisation

of the TVD condition proves to be prohibitively restrictive on Cartesian meshes

because the resulting scheme can be no more than �rst order accurate ���� and

di�cult to de�ne on arbitrary unstructured meshes� Consequently� Spekreijse

��	� proposed a new class of monotone scheme� based on positivity of coe�cients�

a property which is simple to de�ne in any number of dimensions� Much sub

sequent research has been directed towards multidimensional numerical schemes

which satisfy properties of this type� usually based on ensuring that some form
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of local maximum principle is satis�ed� More recently� there has been a great

deal of work on limiting reconstructed solutions on unstructured grids� see for

example the work of Perthame and Qiu ���� in which interpolated solution values

are limited solely to avoid unphysical negative solution values �e�g� of density

and pressure in the Euler equations�� or the Local ExtremumDiminishing �LED�

schemes of Jameson ����� More closely related still to the work presented here

are the slope limiting procedures for multidimensional cellcentre �nite volume

schemes for unstructured triangular meshes proposed by Barth and Jespersen ����

Durlofsky et al� ���� Liu ���� and Batten et al� ���� Each of these schemes involves

the construction of an appropriate linear representation of the solution within

a triangular cell which is then limited in a manner which enforces a positivity

constraint on the scheme� This paper proposes a way in which these limiting tech

niques can be improved by taking more account of the multidimensional nature

of the problem�

The general twodimensional MUSCLtype numerical scheme for the solu

tion of the scalar advection equation is described in Section �� Some existing

techniques for reconstructing and limiting the local solution gradients are then

discussed brie�y� followed by a simple technique for improving the accuracy of

many of these limiting procedures� This involves the construction of a �maximum

principle region� for each cell� within which a gradient operator must lie in order

to satisfy the desired maximum principle� The framework described also allows

the construction of new schemes� but discussion of these is kept to a minimum

since a scheme using these ideas has yet to be devised which consistently improves

on the existing methods �some preliminary results for a maximally compressive

	



limiter are presented in ����� This is an area which warrants further research� A

critical comparison is then made between the results obtained from the schemes

described�

Section � extends the applications of these methods to a nonlinear system of

equations� speci�cally the shallow water equations� The basic high order scheme is

described� in which Roe�s approximate Riemann solver is employed at grid edges�

locally decomposing the system into components to which the scalar scheme is

applied�

� The Scalar Advection Equation

In conservation form the twodimensional scalar advection equation is written

ut � fx � gy � � � �����

where the conservative �uxes f � f�u� and g � g�u� are functions of the solution

variable u�

A MUSCLtype cellcentre �nite volume method for the numerical solution of

the scalar advection equation is described as follows� Integrate ����� over a control

volume� � say� �taken here to be a single grid cell� and apply the divergence

theorem to the resulting �ux integral� giving the equation

Z Z
�
ut dxdy �

I
��

�f � d�n � � � �����

where �f � �f� g�T is the �ux function and �n represents an outward pointing

normal to the boundary �� of the control volume�

Approximation of the boundary integral in ����� leads to the �nite volume
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discretisation

du�
dt

� � �

V�

NeX
k��

�f�k � �nk � �����

in which u� is de�ned to be the average value of u over the control volume �� �f�k is

a numerical �ux function� V� is the area of the control volume� Ne is the number

of edges it has and �nk is the outward pointing normal to the kth edge� scaled by

its length� Note that since the control volumes coincide with the grid cells� the

numerical �ux function �f�k is an approximation to the �ux at a particular grid

edge�

1

�u

�

�

�

�

��

Figure ���� The limiting planes as de�ned for a triangular control volume �left�

and a piecewise constant reconstruction of the solution �right��

Assuming that the approximation to u is constant within each cell and discon

tinuous at the cell edges in general� as illustrated in Figure ���� a scheme which is

�rst order accurate in space and satis�es an appropriate local maximumprinciple

is obtained by introducing an upwind bias into the evaluation of the numerical

�ux function� Taking as an example the kth edge of cell � in Figure ���� the
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upwinding is applied ��� by de�ning

�f��u�� uk� � �nk �

�����
����

u�
��� � �nk if

��� � �nk � �

uk
��� � �nk otherwise �

�����

where uk is the value of u in the adjacent grid cell and
��� is an appropriate local

average of the advection velocity �� �
�
�f

�u
� �g
�u

�T
� evaluated from the solution

values u� and uk� Note that an equivalent expression to ����� is given by

�f��u�� uk� � �nk �
�

�
��f� � �fk� � �nk � �

�
j��� � �nkj�uk � u�� � ���	�

which is generally preferred because of its symmetry� Although only triangular

grid cells are illustrated in Figure ���� the numerical �uxes ����� and ���	� can be

used on general polygonal cells� such as quadrilaterals�

��� Gradient Operators and Higher Order Schemes

Higher order spatial accuracy is achieved by introducing a higher order recon

struction of the variable u within each grid cell� For example� a piecewise linear

approximation to the solution� such as that shown in Figure ���� which is exact

for linear initial data� leads to a method which is second order accurate in space�

Thus� given an initial constant �or average� solution value u within a cell we

carry out a linear reconstruction of u within that cell� This is expressed as

u � u� �r � �L � �����

where �r is a position vector relative to the centroid of the cell and �L is a gradient

operator� yet to be de�ned� It is easy to show that such a reconstruction is

conservative in the sense that

�

V�

Z Z
�
u dxdy � u � �����
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It can also be shown ��� that when ����� holds the resulting numerical scheme

����� will satisfy a local maximum principle for an appropriate restriction on the

timestep as long as the reconstruction ����� within each cell does not lead to the

creation of any new extrema at the midpoints of the edges of that cell� This is

less restrictive than the often used constraint ��� that no new extrema be created

at the cell vertices�

u
u�k

uk�

cell k

Figure ���� A piecewise linear reconstruction of the solution for triangular control

volumes�

The numerical �ux function of Equation ���	� at a cell edge is now written in

terms of the reconstructed solution values in the cells on either side of the edge

and evaluated at the midpoint� as depicted in Figure ���� Thus� �f�� as substituted

into ����� is written

�f�k � �f��u�k� uk�� � �f��u� � �r�k � �L�� uk � �rk� � �Lk� � �����

where �rij is the vector from the centroid of cell i to the midpoint of the edge

between cells i and j� and �Li is the gradient of the reconstructed solution in






cell i� In the notation used here u�k is considered to be an interior reconstructed

solution value relative to the cell under consideration and uk� is the corresponding

exterior value� taken from the adjacent cell �see Figure ����� As in the MUSCL

approach� the discontinuity in the reconstruction at the cell edge motivates the

use of a Riemann solver to evaluate the �uxes here� It remains to de�ne an

appropriate gradient operator �L with which to create the linear reconstruction of

the solution within each grid cell�

A simple gradient operator� which is exact for linear data� can be de�ned on

any grid by taking the �average� solution value in three arbitrarily chosen� but

preferably adjacent� cells �i� j and k say� forming a triangle with anticlockwise

indexing of its vertices� and de�ning

�r��ijk� �

���������������
��������������

�
BBB	
�nx

nu

�ny

nu



CCCA for nu � �

�
BBB	

�

�



CCCA otherwise �

���
�

Here � � ����� is a speci�ed tolerance� and nx� ny and nu are the components

of the vector n normal to the plane� de�ned by the triangle ijk in xyuspace� cf�

Figure ���� and given by

n � �P i � P k�� �P j � P k� � ������

where

P
�
�

�
BBBBBBBB	

x�

y�

u�



CCCCCCCCA

� ������

��



The vector �n has been constructed in such a way that nu always has the same

sign as the area of �ijk� The second option in ���
� deals with the possibility

of �ijk having a nonpositive area and rejects any such triangle as a basis for

reconstruction� Figure ��� illustrates that this can happen even on relatively uni

form grids� Note also that any consistent local approximation to �ru may be used

in place of ���
�� e�g� the GreenGauss and Linear LeastSquares approximations

used in ����

ij

k

Figure ���� A reconstruction triangle with negative area �shaded��

Selecting �L in ����� to be the �r operator of ���
� leads to a second order accu

rate method �a linear solution is modelled exactly� but doesn�t prohibit overshoots

and undershoots at the midpoints of the cell edges� so the scheme does not satisfy

a local maximum principle� In order to impose this the gradient operator �L must

be de�ned as a �limited� form of �r�

����� Limited Gradient Operators

The imposition of a local maximum principle� as used in the work of ���� �� ���

can be achieved by constraining the gradient operator to lie within a �Maximum

Principle �MP� region�� The MP region for a given triangle can be represented

simply by choosing the cell centroid as the origin and then constructing the region
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around it de�ned by the inequalities

min�uk � u�� �� � �r�k � �L � max�uk � u�� �� ������

for k � �� �� � �on triangles�� where �r�k is the vector from the centroid of cell

� to the midpoint of the edge between cells � and k� An example of such a

region is depicted in Figure ���� The gradient operator �L � �x� y�T is most easily

considered as a vector in twodimensional space� then each pair of inequalities

in ������ can be depicted by two parallel lines �one solid and one dashed in the

�gure� perpendicular to the relevant vector �r�k� Figure ��� illustrates a case where

u�� u� � u� and u� 	 u�� If uk � u� has the same sign for each k then the MP

region contains only the centroid of the triangle� as would be expected since this

indicates a local extremum� Hence� any limiting procedure of the type considered

in ������ reduces the scheme locally to �rst order in these cases�

However� the constraints given by ������ ensure that the reconstruction has

the following two properties�

� no new solution extrema are created at the midpoints of the cell edges�

enforcing the maximum principle�

� u�k � u� has the same sign as uk � u��

Note that this di�ers from the work of Barth and Jesperson ��� who� in addition�

propose that

� uk� � u�k has the same sign as uk � u��

This� in combination with the other two properties� generalises the onedimensional

TVD constraint on the reconstruction� but it is not necessary for positivity and�
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as in ��� ��� ��� is not enforced in this work� It is not clear how a MP region

could be constructed which would ensure the third property� but a simple post

processing step� in which the reconstructed solution within the o�ending cells is

limited a second time �so that �L	 
��L�� would be enough to attain it�

�r��

�r��

�r��

�

Figure ���� A Maximum Principle region �shaded��

Existing limited schemes based on ���
� can be expressed quite simply� in two

stages� as

a� Construct one or more of the gradient operators

�r������ � �r������ � �r������ � �r������ � ������

�in the notation of ���
� and Figure �����

b� Limit a gradient operator chosen from �������

Importantly� the �rst of these two steps ensures that the reconstruction of a

linear solution is exact �for higher order accuracy�� whichever of the four gradient
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operators is chosen� and the limiting procedure will not interfere with this� As

mentioned earlier� the list given in ������ can be augmented by the GreenGauss

��rGG� and the Linear LeastSquares ��rLLS� gradient reconstructions suggested

in ���� both of which can be treated in the same manner in the second stage�

In e�ect� step a� de�nes a �nite set of possible directions for the reconstructed

gradient� and step b� chooses one of these directions and bounds the magnitude

of the slope�

The Limited Central Di�erence �LCD� scheme is the simplest and cheapest

approach of the type described above� It considers only the operator �r������

in step a�� and then limits this by setting


k �

����������
���������

max�uk�u����

�r�k��L
if �r�k � �L � max�uk � u�� ��

min�uk�u����

�r�k �
�L

if �r�k � �L 	 min�uk � u�� ��

� otherwise

������

for each edge k� from which the LCD gradient operator is calculated using

�LLCD � 
 �r������ �
�

min
k������


k

�
�r������ � ����	�

The action of this limiter is illustrated in Figure ��	� The initial operator �r������

might place the tip of the vector �L � �x� y�T at any one of the four points indicated

by asterisks in the �gure� Point A is inside the shaded region and so is una�ected

by the limiting� while points B� C and D all lie beyond the region� and the

limiting moves them in a straight line back towards the centroid until they reach

the boundary of the MP region� for points C and D this means a return to the

centroid and a �rst order reconstruction�

Figure ��	 also depicts an alternative limiting procedure� aimed at improving

the accuracy� Instead of retaining the direction of the original gradient operator�

��



�

�

�

�

A

B

C
D

Figure ��	� The alternative limiting procedures�

the limited gradient is de�ned by the point in the MP region closest to the tip

of the vector �L� The dashed arrows indicate the consequent movement of the

points B� C and D� Points such as C and D are most simply dealt with by a

projection step �on to the lines passing through the centroid perpendicular to

�r�� and �r�� respectively� to obtain the gradient direction� followed by a limiting

step which moves the point on to the boundary of the region if it still remains

outside� In practice� however� the expense of changing the limiting procedure for

point B outweighs the resulting improvement in accuracy so the simpler strategy

is applied in such cases�

The limiter of Durlofsky et al� ��� considers the last three gradient operators

of ������ together with �L � ��� discards those which lie outside the MP region and

then chooses �LDurl to be the remaining operator with greatest magnitude�

The Maximum Limited Gradient �MLG� scheme of Batten et al� ��� combines

the two methodologies described above� It takes all four of the operators of

�	



������� limits each one in turn in the manner of the LCD scheme ������ ���	� and

then takes �LMLG to be the remaining operator with largest slope j�Lj� Figure ��	

can again be used as an illustration� If the asterisks represent the four gradient

operators in ������ then each one is limited individually in precisely the manner

of the LCD scheme� moving the gradients into the allowed range� and the point

furthest away from the cell centroid is chosen  in this case the limited position

of point B� As with the LCD scheme the alternative technique of projecting the

gradient operators on to the boundary of the MP region can be used to improve

the accuracy� although the resulting scheme can be prohibitively expensive�

The MLG scheme gives the most compressive of the limiters described so far�

and the only one which reduces to the Superbee limiter ���� in one dimension� but

it is also the most expensive since it requires the computation of four gradient

planes� An even more accurate scheme �but yet more expensive� can be devised

by including the GreenGauss and Limited LeastSquares operators ��� in ������

and applying the MLG procedure to these as well� For practical purposes though�

it is desirable to construct as few gradient operators as possible�

It should be noted that the neither the MLG� the Durlofsky nor the LCD

scheme depends continuously on the solution data� since the limited gradient

operator changes discontinuously as the operator on which it is based moves

out of the sector enclosing the MP region �see Figure ��	�� Whilst this is of

little consequence for genuinely timedependent problems� it may interfere with

convergence to a steady state by causing limit cycling� The inclusion of the

�projection� step in the limiting procedure makes the LCD scheme continuous

as well as improving its accuracy� It is also worth commenting that the general
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limiting procedure� as described by steps a� and b� earlier in this section� can

easily be extended to arbitrary polygonal polyhedral control volumes in two and

three dimensions ���� However� on structured quadrilateral grids this method is

considerably more di�usive than using a standard� dimensionally split scheme�

see for example ���� which is linearity preserving on the uniform grids used here

�although it might not be on distorted grids��

A �nal point to make in this section is that the construction of the MP region

facilitates the creation of a range of new limited gradient operators satisfying

the given maximum principle� even though they can generally only be imposed

in a rather arti�cial manner� For example� the steepest gradient operator which

satis�es the maximum principle is de�ned by the point in the MP region farthest

away from the centroid of the triangle �which is always a �corner� of the region� as

indicated by an asterisk for the case shown in Figure ����� and this can be taken

to be the limited gradient� but only when a necessity for limiting is indicated�

Further details and preliminary results can be found in ��� and provides a subject

for further research�

A scheme of this form� as applied on a triangular grid� can be summarised as

follows�

� Calculate the gradient operator �r������ as in the LCD scheme and check

whether it creates any new local extrema at the edge midpoints�

� if not� select �L � �r�������

� otherwise calculate the new gradient operator �L� e�g� the one with

maximal slope which still satis�es the local maximum principle�
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Finding a gradient operator of this type is relatively expensive� so it should only

be calculated in cells where the initial reconstruction gives rise to overshoots or

undershoots� This process is signi�cantly cheaper than �nding the three other

gradient operators of the MLG limiter� In fact the local maximumprinciple could

be checked for all four gradient operators of the MLG limiter ������� but the extra

compression which results does not justify the computational expense�

��� Boundaries

The limiting procedure is applied very simply at boundaries of the domain� In

step a� of the limiting procedure only those gradient operators which can be

constructed from centroids of control volumes within the domain are included

and the others are assumed to be zero� Also� only internal solution values are

considered in the search for new extrema in the reconstruction� On a triangular

grid this means that only a single gradient operator is constructed �and limited�

in each cell with just one boundary edge� �For the LCD scheme this replaces the

usual gradient operator�� The scheme therefore produces an exact reconstruction

of linear data on triangles except in cells with multiple boundary edges� The �uxes

through the in�ow boundary edges are overwritten by their exact values� When

periodic boundary conditions are used no special treatment of the boundaries is

needed�
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��� Time Integration

Second order temporal accuracy may be obtained using a RungeKutta time

stepping method such as

u� � un� �
!t

V

NeX
k��

�f
�
un� � �r�k � �Ln

� � u
n
k � �rk� � �Ln

k

�
� �nk

un	�� �
�

�


un� � u� � !t

V

NeX
k��

�f
�
u� � �r�k � �L�� uk � �rk� � �Lk

�
� �nk

�

� un� �
!t

�V
��u� � �u�� � ������

However� the cost of the reconstructions and the local Riemann solutions is pro

hibitively expensive� so the following approximation to the above explicit update

scheme ���� is used instead�

u� � un� �
!t

�V

NeX
k��

�f
�
un� � �r�k � �Ln

�

�
� �nk

un	�� � un� �
!t

V

NeX
k��

�f
�
u� � �r�k � �Ln

� � uk � �rk� � �Ln
k

�
� �nk � ������

It has been shown ��� that on triangular grids any limiter of the type described

in this paper satis�es the maximum principle for a restriction on the timestep

within each cell given by

!t � V

�maxk j��� � �nkj
� ������

The maximum is taken over the adjacent cells indexed here by k� Note that

a slight drawback with the simpli�ed scheme ������ is that it may allow small

overshoots and undershoots to appear in the solution� However� these do not

interfere noticeably with the overall robustness of the algorithm�
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��� Results

Numerical experiments have been carried out to test the behaviour of the schemes

described in this paper� The �rst test presented here is the advection of an initial

pro�le given by the double sine wave function

u � sin���x� sin���y� � ����
�

with velocity �� � ��� ��T over the domain ��� �� � ��� ��� This problem has been

solved on three types of grid� each of which is illustrated in Figure ���� Periodic

boundary conditions are applied� Note that the advection velocity has been

chosen so that it is not aligned with mesh edges� to provide a more strenuous test

than was used to produce the accuracy study of schemes of this type presented

in ���� and hence there is some loss of accuracy in comparison�

A B Q

Figure ���� The three grid types used for the numerical experiments�

Errors in the L� and L� norms for the solutions obtained when t � ���

are shown in Figures ��� and ���� In all of the numerical experiments the ratio

!t!x � ����� where !x is the length of any horizontal grid edge in Figure ����

giving a CFL of about ���	��

The �rst order scheme is unsurprisingly the least accurate in each case� while

the unlimited scheme is easily the best� it is the oscillations it allows in solutions

with rapidly varying gradients which cause problems when applied to nonlinear

��
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Figure ���� Errors for the double sine wave test case on grid A�
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Figure ���� Errors for the double sine wave test case on grid B�
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systems since they can lead to unphysical situations� On grid B each of the

higher order schemes produces very similar results� none of which can compete

with the accuracy attained on a uniform quadrilateral grid of type Q �using a

dimensionally split upwind scheme with the Superbee limiter ������ particularly

when taking into account the fact that this grid contains only half the number of

cells of the others� It can be seen from Table I that none of the limited schemes

achieves even �rst order accuracy on the �nest grids tested� This seems to be due

to the anisotropic connectivity of this type of grid and its e�ect on the limiting

procedure� In essence� the limiting is applied to solution values at the midpoints

of the cell edges� On type A grids these lie on the midpoints of the straight lines

joining the cell centroids �see Figure ��
�� so the limiting procedure gives higher

accuracy than on grid B where this is not generally the case� Furthermore� grid B

will generally give a smaller MP region� simply because the bounds in ������ are

tighter due to the centroids of the adjacent triangles being closer together which

will generally give a smaller di�erence in u between cell centres�

A B

Figure ��
� Bounding points �circles� for the limiting of the reconstruction for the

two grid types�

Note that other schemes which calculate only a single gradient operator� such

��



as Limited LeastSquares ���� produce results which are almost indistinguishable

from those of the LCD scheme and so they are not presented here�

On type A grids the advantages of adding the projection step to the limiting

procedure become clear� particularly in the comparisons of the L� error� The

projected LCD scheme provides a clear improvement� even over the solution ob

tained on the quadrilateral grid� When taking into account the di�ering numbers

of grid cells �which would shift the graph of the quadrilateral scheme ���	 to the

right�� the projected LCD scheme still produces a solution of a prescribed accu

racy faster than the structured grid schemes� �The �gures given as times in Table

I are relative to the time taken to calculate the �rst order solution and are all

found for ��� �� grids�� On the �nest grids though� it is the MLG scheme which

achieves the highest order of accuracy in terms of the L� error� the wider choice

of gradient operators being more useful here than the projection of a single one�

Grid type A Grid type B

Scheme Time L� L� Peak L� L� Peak

First order ���� ���� ���� ���� ��
� ��
� ����

LCD ���� ��
� ���� ��	� ���� ���� ����

Projected LCD ��	� ���� ���� ���	 ���	 ���� ����

MLG ���� ���� ���	 ��
� ���� ���	 ����

Unlimited ���� ���� ���� ��
	 ��

 ��

 ��
�

Quadrilaterals ���	 ���	 ��
� ���� ���	 ��
� ����

Table I� Numerical orders of accuracy and relative cpu times for the double sine

wave test case and peak solution values for the rotating cone test case�

��



A second test case has been used to further clarify the relative merits of the

given schemes� It involves the circular advection of the �cone�� given by the initial

conditions �when t � ����

u �

�����
����

cos����r� for r � ���	

� otherwise

������

where r� � �x � ��	�� � y�� with velocity �� � ����y� ��x�T around the domain

���� ��� ���� ��� with zero conditions at each of the in�ow boundaries� The initial

pro�le should be advected in a circle without change of shape until it returns to

its original position when t � ����

Solution pro�les obtained on �� � �� grids of types A and B are shown in

Figures ���� and ���� respectively� The maximumCFL within the computational

domain was ���		� The corresponding peak solution values are shown in Table I�

Of the schemes presented on triangular grids� MLG is clearly the most compres

sive on grid type A� con�rming what was seen for the �rst test case� although

there is some small upstream distortion of the pro�le� This is not apparent in the

projected LCD solution and this is considerably better than the standard LCD

approach� However� none of the unstructured grid schemes matches the perfor

mance of the dimensionally split Superbee limited upwinding on quadrilaterals�

On grid B the projected LCD scheme is now the best of the triangular grid meth

ods� There is little to choose between the solutions obtained from this and the

MLG scheme� but the relative cpu times in Table I indicate the greater e�ciency

of the former�

In general� it can be seen that the multidimensional projection step improves

the LCD scheme considerably� to the point where the solutions are at least as

��



Exact Solution First Order

LCD Projected LCD

MLG Quadrilaterals

Figure ����� Solutions for the rotating cone test case on grid type A�
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Exact Solution First Order

LCD Projected LCD

MLG Quadrilaterals

Figure ����� Solutions for the rotating cone test case on grid type B�
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accurate as those produced by the more expensive MLG scheme on all but the

most uniform grids� Using the projection step also seems to be particularly

advantageous for reducing the errors in the L� norm�

� Systems of Equations

The extension of these cell centred MUSCLtype �nite volume schemes to non

linear systems of equations is straightforward� The conservative equations take

the general form

U t � Fx �Gy � � � �����

in which U is the vector of conserved variables and F � G are the conservative �ux

vectors� These are de�ned explicitly for the shallow water equations in Appendix

A�

Integrating the equations ����� over a control volume � �taken as before to be

a grid cell� and applying the divergence theorem to the �ux integral results in

Z Z
�
U t dxdy �

I
��

�F� G� � d�n � � � �����

where �n again represents an outward pointing normal to the boundary� Approx

imating the boundary integral and de�ning U� to be the average value of U over

the control volume � leads to the �nite volume discretisation

�U�

�t
� � �

V�

NeX
k��

�F �

k� G
�

k� � �nk � �����

where F �

k and G�

k are the numerical �ux functions� V� is the area of the control

volume� Ne is the number of edges of the control volume and �nk is the outward

pointing normal to the kth edge� scaled by its length�

��



The generalisation of the �rst order scalar numerical �ux function of ���	� to

systems of equations is given by

�F ��U�� Uk�� G
��U �� Uk�� � �nk � �

� ��F �� G�� � �F k� Gk�� � �nk

��
�
j� �A� �B� � �nkj�Uk � U �� � �����

in which A � �F

�U
and B � �G

�U
are the �ux Jacobians� The construction of �A and

�B� the conservative approximations to the Jacobian matrices� and subsequently

the numerical �ux at the midpoint of the cell edge follows the technique suggested

by Roe �����

The evolution of the discontinuous approximation to the solution is modelled

by constructing a series of approximate Riemann problems at the edge midpoints

with �left� and �right� states� U�k and U k� respectively at edge k �the internal and

external states relative to the control volume�� of the reconstructed solution� cf�

Equation ����� and Figure ���� Each Riemann problem is solved using the decom

position of the �ux di�erence across the edge into its characteristic components�

This results in a high order numerical �ux function for edge k given by

�F ��U �k� Uk��� G
��U�k� Uk��� � �nk � �

� ��F �k� G�k� � �F k�� Gk��� � �nk

��
�

PNw

j�� �

j j��jj�rj � ���	�

Here Nw is the number of components �or �waves�� in the decomposition� the

tilde represents the Roe average value at the discontinuity �which is constructed

so as to ensure that the linearised decomposition is conservative ������ 
j is a

wave �strength�� �j and rj� respectively the eigenvalues and eigenvectors of the

matrix �A�B� � �nk� represent the speed of the wave and the transformation of a

perturbation of the characteristic variables into a perturbation of the conserva

��



tive variables� Details of the exact values of these averages for the shallow water

equations are supplied in Appendix A� The substitution of ���	� into ����� to

gether with the application of an appropriate timestepping scheme �see Section

���� gives the �nal algorithm�

The slope limiting is commonly applied to the primitive variables which� for

the Euler equations ensures a positive reconstruction of both density and pressure

�although this may not be maintained by the subsequent application of Roe�s

approximate Riemann solver�� For the shallow water equations both primitive

and conservative variable limiting give positive depths so there is less advantage

in using the former� which is also slightly more expensive� Here the limiters are

applied directly to the conservative variables� mainly for the purposes of speed

and simplicity� In many ways characteristic limiting would seem to be the most

natural implementation� see for example ���� but its application to Roe�s scheme

is not straightforward ���� and the results are not improved greatly so they are

not presented here�

��� Boundary Conditions

Simple characteristic boundary conditions are applied� in which the �ux at a

boundary edge is evaluated directly using information from within the boundary

cell to supplement the imposed boundary values� The physical conditions applied

at a given edge correspond to the positive eigenvalues of the matrixC � A cos ��

B sin �� where �cos �� sin ��T is the local unit inward normal to the boundary� The

conservative �ux Jacobian matrices A and B are given for the shallow water

equations in Appendix A�

�




At a freestream boundary four possibilities arise� �a� supercritical in�ow�

where all three eigenvalues are positive and the boundary �ux is determined

completely by the imposed solution values� �b� supercritical out�ow� where no

eigenvalue is positive and the �ux is calculated from internal solution values�

�c� subcritical in�ow� where one eigenvalue is negative and whose corresponding

Riemann invariant is given its internal value with everything else imposed� and

�nally �d� subcritical out�ow� for which one eigenvalue is positive and only the

value of its associated Riemann invariant is imposed� At a solid wall the normal

velocity component is set to zero while the rest of the information required to

calculate the �ux is taken from the interior of the domain�

��� Results

The �rst test case considered here is a simple steady state problem with an

exact solution� represented by an oblique hydraulic jump in a channel induced

by a wedge ���� The geometry of the channel is indicated in Figure ���� it is

��m long� ��m wide at in�ow and the foot of the wedge is ��m in from the

in�ow boundary� The slope of the wedge is chosen here to be ��
	�� and in�ow

conditions of h � ���m� u � ��	�ms�� and v � ���ms�� �implying a Froude

number of F � ����� are imposed� The resulting steady state �ow should be

purely supercritical and divided into two regions by an oblique hydraulic jump at

an angle of ��� to the upstream �ow� Downstream of this jump the exact solution

is given by hd � ��	m and Fd � ������

Three solutions are illustrated in Figure ��� and there is little to choose be

tween them� The �nal solution was obtained using a dimensionally split� van Leer

��



Grid MLG

Projected LCD Quadrilaterals

Figure ���� Grid and depth contours for the oblique hydraulic jump test case�

limited scheme on a regular ��� �� cell quadrilateral grid� giving the same mesh

scale as the ���
 cell triangular grid shown� but fewer cells� so it is unsurprising

that this appears to be the most di�usive of the schemes� When sampling the so

lution at a point on the out�ow boundary midway between the lower wall and the

jump� each of the schemes predicted the downstream �ow parameters accurate to

two decimal places�

The next test case presented is of shallow water �ow for a partial dam break

problem �	�� The computational domain consists of a ���m����m basin bisected

by a dam� When t � ���s a break in the dam appears between 
	m and ���m

from one end� Initially h � ��m on one side and h � 	m on the other� while the

water has zero velocity everywhere� The ���� cell grid on which the calculations

were carried out is shown in Figure ���� Each of the boundaries is treated as a

��



solid wall except those on the left and right which were given simple nonre�ecting

boundary conditions�

Grid MLG

Projected LCD Quadrilaterals

Figure ���� Grid and depth contours for the partial dam break test case�

Figure ��� also shows the surface elevation of the water at t � ���s for the

MLG and projected LCD schemes �using the grid shown� and a superbee limited

scheme on a uniform 	��	� quadrilateral grid� The projected LCD scheme seems

to give a slightly smoother solution than the MLG scheme� and both appear to

be better than the quadrilateral scheme in the sharpness of capturing of the

downstream hydraulic jump� The dimensionally split scheme also appears to be

tending towards instability within the downstream vortex created at the lower

��



edge of the break� The result obtained using the projected LCD scheme is also

pictured in Figure ����

Figure ���� Projected LCD solution for the partial dam break test case�

Finally� the schemes have been compared using a circular dam break test case�

Initially� two regions of still water are separated by a cylindrical wall �radius ��m�

centred in the 	�m� 	�m square domain shown in Figure ���� The depth of the

water is ��m within the cylinder and �m outside� The wall is then removed and

the solutions shown in Figures ��� and ��	 are after t � ���
s�

Once more� the solutions are very similar� The radial symmetry is slightly

distorted by the e�ects of the grid in each case� but otherwise the solutions are

very accurate� In all cases the MLG and projected LCD schemes have given

similar solutions but the extra speed of the new scheme gives it the advantage in

terms of e�ciency�

��



Grid MLG

Projected LCD Quadrilaterals

Figure ���� Grid and depth contours for the circular dam break test case�
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Figure ��	� Projected LCD solution for the circular dam break test case�

� Conclusions

In this paper the construction� on triangular grids� of second order accurate�

cell centre �nite volume schemes which satisfy a local maximum principle has

been discussed� The methods are based on MUSCLtype schemes ���� in two

dimensions in which a linear reconstruction of the solution is created within each

cell from local data� the gradient of which is limited to impose the desired local

maximum principle on the approximation� The methods have been tested on the

scalar advection equation and then extended to nonlinear systems of equations

via Roe�s approximate Riemann solver�

The limiters which satisfy the maximumprinciple are de�ned using constraints

applied at the midpoints of the edges of the cells� It has been shown that these

constraints de�ne a region within which every limiter of the chosen type lies�

�	



Having de�ned this region� it is possible to use the multidimensional nature of the

problem to apply a new limiting strategy to the existing schemes which improves

their accuracy� It is also possible to construct new schemes using these ideas� but

this has been left as a subject for future research� The �projected� limiter schemes

are cheaper than the most accurate of the previously constructed limiters� and in

the scalar case it is often considerably more accurate�

The scalar schemes have also been successfully applied to the shallow water e

quations using Roe�s scheme� and accurate results have been obtained by applying

the limiting procedure to the conservative variables� Although the improvement

in accuracy obtained by using the new scheme is less apparent than in the scalar

case� it is still signi�cantly more e�cient than the best of the existing schemes�

Research into more robust and accurate treatments of source terms and boundary

conditions associated with the shallow water equations is ongoing�
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A The Shallow Water Equations

The shallow water equations depend on the conservative variables and �uxes given

by

U �

�
BBBBBBBB	

h

hu

hv



CCCCCCCCA

� F �

�
BBBBBBBB	

hu

hu� � gh�

�

huv



CCCCCCCCA

� G �

�
BBBBBBBB	

hv

huv

hv� � gh�

�



CCCCCCCCA

� �A���

where h is the depth of the �ow� u and v are the x and yvelocities and g is the

acceleration due to gravity� and result in the following �ux Jacobians�

A �
�F

�U
�

�
BBBBBBBB	

� � �

c� � u� �u �

�uv v u



CCCCCCCCA

� B �
�G

�U
�

�
BBBBBBBB	

� � �

�uv v u

c� � v� � �v



CCCCCCCCA

�

�A���

where c �
p
gh is the gravity wave speed�

In Roe�s approximate Riemann solver the eigenvalues and eigenvectors of the

matrix

�A� B� � �n �

�
BBBBBBBB	

� nx ny

�c� � u��nx � uvny �unx � vny uny

�uvnx � �c� � v��ny vnx unx � �vny



CCCCCCCCA

�A���

are

�� � �unx � �vny � �c � �� � �unx � �vny � �� � �unx � �vny � �c � �A���

and

r� �

�
BBBBBBBB	

�

�u� �cnx

�v � �cny



CCCCCCCCA

� r� �

�
BBBBBBBB	

�

��cny

�cnx



CCCCCCCCA

� r� �

�
BBBBBBBB	

�

�u� �cnx

�v � �cny



CCCCCCCCA

� �A�	�

�




respectively� and the corresponding wave strengths in ���	� are given by

�
� �
!h

�
�

�

��c
�!�hu�nx �!�hv�ny � ��unx � �vny�!h�

�
� �
�

�c
��!�hv�� �v!h�nx � �!�hu�� �u!h�ny�

�
� �
!h

�
� �

��c
�!�hu�nx �!�hv�ny � ��unx � �vny�!h� � �A���

in which the Roe average states are

�u �
uR
p
hR � uL

p
hLp

hR �
p
hL

� �v �
vR
p
hR � vL

p
hLp

hR �
p
hL

� �c �

s
g�hR � hL�

�
�

�A���

and the di�erence operator is given by

!� � ���R � ���L � �A���

In two dimensions the subscripts �L and �R represent the interior and exterior

edge midpoint values relative to the cell under consideration�
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