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Abstract

We show that data assimilation using four-dimensional variation (4DVar) can be inter-
preted as a form of Tikhonov regularisation, a very familiar method for solving ill-posed
inverse problems. It is known from image restoration problems that L1-norm penalty reg-
ularisation recovers sharp edges in the image more accurately than Tikhonov, or L2-norm,
penalty regularisation. We apply this idea to 4DVar for problems where shocks are present
and give some examples where the L1-norm penalty approach performs much better than
the standard L2-norm regularisation in 4DVar.

1 Introduction

Data assimilation is a method for combining model forecast data with observational data in
order to forecast more accurately the state of a system. One of the most popular data assimila-
tion methods used in modern numerical weather prediction is four-dimensional data assimilation
(4DVar) (Sasaki (1970); Talagrand (1981); Lewis et al. (2006)) which seeks the initial conditions
such that the forecast best fits the observations within an interval called the assimilation win-
dow. Currently, in most weather centers systems and states of dimension O(107) or higher are
considered, whereas there are considerably fewer observations, usually O(106) (see Daley (1991);
Nichols (2010) for a review on data assimilation methods).

Linearised 4DVar can be shown to be equivalent to Tikhonov, or L2-norm regularisation, a
well-known method for solving ill-posed problems (Johnson et al. (2005)). Such problems appear
in a wide range of applications (Engl et al. (1996)) such as geosciences and image restoration,
the process of estimating an original image from a given blurred image. From the latter work it
is known that by replacing the L2-norm penalty term with an L1-norm penalty function image
restoration problems become edge-preserving as they do not penalise the edges of the image. The
L1-norm penalty regularisation then recovers sharp edges in the image better than the L2-norm
penalty regularisation (Hansen (1998); Hansen et al. (2006)). Edges in images lead to outliers in
the regularisation term and hence, L1-norms for the regularisation terms give a better result in
image restoration. This is the motivation behind our approach for variational data assimilation.

The edge-preserving property of L1-norm regularisation can be used for models which de-
velop shocks, which is the case for moving weather fronts. We apply this idea to 4DVar for
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Resolution of sharp fronts in 4DVar

problems where shocks are present and give several numerical examples where the L1-norm
penalty approach performs better than the standard L2-norm regularisation in 4DVar. Our
examples include a linear advection equation and Burgers’ equations where sharp fronts and
shocks are present or develop. We will observe that with L1-norm regularisation fronts as well
as front speeds are resolved better than with the standard L2-norm regularisation of 4DVar.

Section 2 gives an introduction to 4DVar and shows its relation to Tikhonov regularisation.
In Section 3 we introduce the new algorithm and in Section 4 we state the model equations.
Sections 5, 6, 7 and 8 present numerical examples, where the new L1-norm regularisation is
compared to standard 4DVar. In our examples we introduce several kinds of model error.
Under these conditions it can be seen that L1-norm regularisation outperforms 4DVar when
sharp fronts are present (see Sections 5, 6 and 7) and both methods do equally well if no fronts
are present (see Section 8). We conclude with a section on future work.

2 4DVar and its relation to Tikhonov regularisation

In nonlinear 4DVar we aim to minimise the cost functional

J (x0) =
1

2
(x0 − xb

0)
T B−1(x0 − xb

0)

+
1

2

N∑

i=1

(yi −Hi(xi))
T R−1

i (yi −Hi(xi))
(1)

subject to the system equations

xi+1 = Mi+1,i(xi), i = 0, . . . , N − 1. (2)

This is a nonlinear constraint minimisation problem where the first term in (1) is called the
background term, xb

0 is the background state at time t = 0 and xi, i = 1, . . . , N are the state
vectors at time ti, which form the forecast trajectory. In weather forecasting the state vector
xb

0 is the previous forecast at time t = 0. The vector yi, i = 1, . . . , N contains the observations
at times ti. Hi is the observation operator which converts the model state into the observation
state. Hence (1) is a nonlinear weighted least-squares problem. By minimising J(x0) we find an
initial state x0, known as the analysis, such that the forecast trajectory is close to the background
trajectory and the observations in a suitable norm. The symmetric matrix B and the symmetric
matrices Ri, i = 1 , . . . , N are assumed to represent the covariance matrices of the errors in the
background and the observations respectively. Provided the background and observation errors
have Gaussian distributions with mean zero, then minimising J(x0) is equivalent to finding the
maximum a posteriori Bayesian estimator for the true initial condition.

We apply a Gauß-Newton method (Dennis and Schnabel (1983)) in order to solve the min-
imisation problem (1). From a starting guess x0

0, Newton’s method for solving the gradient
equation is

∇∇J (xk
0)∆xk

0 = −∇J (xk
0), xk+1

0
= xk

0 + ∆xk
0, (3)

for k ≥ 0. In the Gauß-Newton method, the Hessian is replaced by an approximate Hessian
∇̃∇J (xk

0) that neglects all the terms involving second derivatives of Mi+1,i and Hi. We let
Mi+1,i be the Jacobian of Mi+1,i. Here we only consider problems where the observation operator
is linear, that is Hi(xi) = Hi(xi). Furthermore, both Ri = R and Hi = H, are assumed to be
unchanged over time.
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The gradient of (1) is then given by

∇J (x0) =B−1(x0 − xb
0)

−

N∑

i=1

Mi,0(x0)
T HT R−1(yi − H(xi)),

(4)

where Mi,0(x0) is the Jacobian of Mi,0(x0). The chain rule gives

Mi,0(x0) = Mi,i−1(xi−1)Mi−1,i−2(xi−2) · · ·M1,0(x0).

Taking the gradient of (4) and neglecting terms involving the gradient of Mi,0(x0) gives

∇̃∇J (x0) = B−1 +

N∑

i=1

Mi,0(x0)
T HT R−1HMi,0(x0). (5)

Both the summation terms in (4) and (5) can be obtained recursively using the adjoint equations

λN = 0,

λi−1 = Mi,i−1(xi−1)
T (λi + HT R−1(yi − H(xi))),

for i = N, . . . , 1, in order to find the gradient

∇J (x0) = B−1(x0 − xb
0) − λ0,

and similarly

∇λN = 0

∇λi−1 = Mi,i−1(xi−1)
T (∇λi − HT R−1HMi,0(x0)),

for i = N, . . . , 1, leads to
∇̃∇J (x0) = B−1 −∇λ0.

Using these adjoint equations we avoid having to compute Mi,i−1(xi−1) several times. Note λi,
i = 0, . . . , N are vectors whereas ∇λi, i = 0, . . . , N are square matrices of the dimension of the
system state.

The approximate Hessian ∇̃∇J (x0) and ∇J (x0) are then used in (3), where the system is
solved directly.

Note that this approach is mathematically equivalent to the incremental 4DVar method as
described in (Lawless et al. (2005)); in the incremental method, however, the inner equations
(3) are solved iteratively.

We can rewrite the cost function (1) in 4DVar as

J (x0) =
1

2
(x0 − xb

0)
T B−1(x0 − xb

0)

+
1

2
(ŷ − Ĥ(x0))

T R̂−1(ŷ − Ĥ(x0)),

3
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where

Ĥ(x0) =




HM1,0(x0)
HM2,0(x0)

...
HMN,0(x0)


 , and ŷ =




y1

y2

...
yN


 .

In general Ĥ(x0) is a nonlinear operator, ŷ is a vector and R̂ is a block diagonal matrix with
diagonal blocks equal to R. If we linearise Mi,0 about xb

0 and denote the Jacobian of Mi,0 by
Mi,0 then

Ĥ := Ĥ(xb
0) =




HM1,0(x
b
0)

HM2,0(x
b
0)

...
HMN,0(x

b
0)


 , (6)

is a matrix (it is essentially the observability matrix). Now writing B = σ2
bCB and R̂ = σ2

oCR

and performing a variable transform z := C
−1/2

B (x0 − xb
0) we can write the linearised objective

function that needs to be minimised as

Ĵ(z) =‖C
−1/2

R (ŷ − Ĥ(xb
0)) − C

−1/2

R ĤC
1/2

B z‖2
2

+ µ2‖z‖2
2, µ2 =

σ2
o

σ2
b

.
(7)

This is the same as the linear least-squares problem that needs to be solved for Tikhonov
regularisation (Engl et al. (1996)), where µ2 acts as the regularisation parameter here. If we set

G := C
−1/2

R ĤC
1/2

B and f := C
−1/2

R (ŷ − Ĥ(xb
0)), (8)

then equation (7) may be written as

Ĵ(z) = ‖f − Gz‖2
2 + µ2‖z‖2

2, µ2 =
σ2

o

σ2
b

. (9)

If G is an ill-posed operator - or, in the discrete setting, an ill-conditioned matrix , then the
minimisation problem

min
z

{‖f − Gz‖2
2} (10)

is hard to solve exactly, that is, the solution z does not continuously depend on the data. In data

assimilation the matrix G = C
−1/2

R ĤC
1/2

B is generally ill-conditioned, which means it has singular
values that decay rapidly and many are very small or even zero. This problem occurs if there
are not enough observations in the system, which is typical for numerical weather prediction.
Furthermore, the given observation data are subject to errors, leading to errors in the vector f .
Hence, we can see that the minimisation problem (10) with an ill-conditioned system matrix G
and an unreliable data vector f will lead to an unstable solution and some form of regularisation
is required (for example preconditioning, Tikhonov regularisation, singular value filtering, etc.).
We consider Tikhonov regularisation where a regularisation term µ2‖z‖2

2 is introduced, which
leads to the minimisation of Ĵ(z) in (9). The minimisation of the Tikhonov functional (9) gives
the regularised solution

z = (GT G + µ2I)−1GT f =

q∑

j=1

σ2
j

σ2
j + µ2

ujf

σj
vj ,
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where q is the length of the vector f (which is equivalent to N times the number of observations
per time step). The vectors uj and vj are the singular vectors of G belonging to the singular
values σj, where G has the singular value decomposition G = UΣV T , with U and V orthonormal
matrices and Σ the diagonal matrix with entries σ1 ≥ σ2 ≥ . . . ≥ σl ≥ 0. Hence the function

σ2

j

σ2

j +µ2
acts as a filter function for small singular values σj .

It is known from image processing (Hansen et al. (2006)) that instead of taking the L2-norm
for the regularisation term µ2‖z‖2

2 (that is the background term) the L1-norm gives a better
performance when sharp edges need to be recovered. We use this idea in order to try to improve
the performance of 4DVar for the recovery of fronts.

3 L1-norm regularisation

With the notation in (8), the minimisation problem in (7) can be written as

min
z

Ĵ2(z) = min
z

{‖f − Gz‖2
2 + µ2‖z‖2

2}, µ2 =
σ2

o

σ2
b

, (11)

where the second term is a regularisation term, µ2 is the regularisation parameter. In the liter-
ature, there has been a growing interest in using L1-norm regularisation for image restoration,
see, for example Fu et al. (2006); Agarwal et al. (2007); Schmidt et al. (2007).

Hence, in this paper we consider the effects of L1-norm regularisation for variational data
assimilation by replacing the 2-norm in the regularisation term µ2‖z‖2

2 of (11) by the 1-norm to
obtain

min
z

Ĵ1(z) = min
z

{‖f − Gz‖2
2 + µ2‖z‖1}, µ2 =

σ2
o

σ2
b

. (12)

In fact, in general we can consider a p-norm, in the regularisation term, which leads to the
minimisation problem

min
z

Ĵp(z) = min
z

{‖f − Gz‖2
2 + µ2‖z‖p

p}, µ2 =
σ2

o

σ2
b

, (13)

The advantage of using the L1-norm is that the solution is more robust to outliers. It has
been observed that a small number of outliers have less influence on the solution, (Fu et al.

(2006)). Edges in images lead to outliers in the regularisation term and hence, L1-norms for the
regularisation terms give a better result in image restoration. This is the motivation behind our
approach for variational data assimilation. We will observe, that for fronts and shocks, L1-norm
regularisation in 4DVar gives much better results than the standard L2-norm approach.

Note that both the L2-norm and the L1-norm minimisation can be interpreted from a
Bayesian point of view. For the L2-norm approach - which is equivalent to standard 4DVar
- a Gaussian distribution is assumed for the error in the prior - that is, for the background error.
For the L1-norm the background error is assumed to have a Laplacian distribution (a modulus
exponential distribution).

The following examples include a square wave advected using the linear advection equation,
a moving front in Burgers’ equation and a shock developing in Burger’s equation. For all these
examples we use a so-called true model (where we take the observation from) and another
model, which is different from the truth and hence, introduces a model error. The different
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models we use are introduced in the next section. In all examples we observed that the L1-norm
regularisation indeed gives better results than the L2-norm approach.

Note that in all the examples we keep the regularisation parameter µ fixed, as we are only
investigating the influence of the norm in the regularisation term, but not the size of the regu-
larisation parameter.

4 Models

In this section we consider the problem

ut + [f(u)]x = 0, (14)

where f(u) is given either by
f(u) = u, (15)

for the linear advection equation or by

f(u) =
1

2
u2, (16)

for the inviscid Burgers’ equation.
This general problem can be discretised using the following numerical schemes. The upwind

scheme is given by

Un+1

j = Un
j −

∆t

∆x

(
f(Un

j ) − f(Un
j−1)

)
. (17)

The model equations for the Lax-Friedrich method are

Un+1

j =
1

2
(Un

j−1 + Un
j+1) −

∆t

2∆x
(f(Un

j+1) − f(Un
j−1)), (18)

and the model equations for the Lax-Wendroff method in conservative form are given by

Un+1

j = Un
j −

∆t

2∆x
(f(Un

j+1) − f(Un
j−1))

+
∆t2

2∆x2

(
Aj+ 1

2

(f(Un
j+1) − f(Un

j ))

−Aj− 1

2

(f(Un
j ) − f(Un

j−1))
)

.

(19)

All equations are valid for j = 1, . . . , N , where f is given by (15) or (16). For the Lax-Wendroff
method A(u) = f ′(u) denotes the Jacobian matrix and Aj± 1

2

is the Jacobian matrix evaluated

at 1

2
(Un

j + Un
j±1

). For more details on the the above methods we refer to LeVeque (1992).

5 Linear advection equation - Example 1

Consider the linear advection equation

ut + ux = 0,

6
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on the interval x ∈ [0, 1], with periodic boundary conditions. The initial solution is a square
wave defined by

u(x, 0) =

{
0.5, 0.25 < x < 0.5

−0.5, x < 0.25 or x > 0.5.

This wave moves through the time interval; the true solution is obtained by the method of
characteristics and the model equations are defined by the upwind scheme (17) with boundary
conditions Un+1

0
= Un+1

N , where j = 1, . . . , N , ∆x = 1

N and n is the number of time steps.
The same example was used in Griffith and Nichols (2000). For this example we take N = 100,
∆t = 0.005.

5.1 A standard experiment

We consider an assimilation window of length 40 time steps. After the assimilation period we
compute the forecast for another 40 time steps, and hence, 80 time steps are considered in total.
For the background and observation error covariance matrices we take B = I and R = 0.01I,
as we put more emphasis on the observations rather than on the background. Moreover, for the
background we choose U0

b = 0. The background thus contains significant errors with variance
of order unity. We test several cases.

1. Perfect observations are taken everywhere in time and space.

2. Perfect observations are taken every 20 points in space and every 2 time steps.

3. Imperfect observations are taken every 20 points in space and every 2 time steps; for the
observations we introduce Gaussian noise with mean zero and variance 0.01.

For all cases we test 4DVar with both L2-norm and L1-norm regularisation. In the implemen-
tation we use ‖ · ‖p

p with p = 1.00001 instead of p = 1, in order to simplify the computations.
Figures 1 - 6 show the results for Example 1, where the linear advection equation is used as a
model. L1-regularisation is advantageous if shocks and fronts are present.

In the plots the true solution is represented by a thick dot-dashed line (called ’Truth’ in the
legend). The model solution (which is derived from the upwind method) is shown as a dashed
line (called ’Imperfect model’ in the legend). This is the best that we can achieve in the data
assimilation, as the model error is always present. The solution obtained from the assimilation
process by incorporating the observations is given by the solid line (called ’Final solution’ in the
legend).

For perfect observations the result for 4DVar is shown in Figure 1, and that for L1-regularisation
in Figure 2. The analysis obtained by 4DVar is very inaccurate, with many oscillations near
the discontinuity (first plot in Figure 1). When L1-regularisation is used, the initial condition
is correct (first plot in Figure 2). The same result is true for partial observations (Figure 3 for
4DVar versus Figure 4 for L1-regularisation) and for imperfect partial observations (Figure 5
for 4DVar versus Figure 6 for L1-regularisation). In 4DVar the initial conditions are chosen to
compensate on average for the model errors over the entire time window, and hence 4DVar does
not produce an accurate estimate of the truth at the initial time. From Figures 3 and 5 for
4DVar we also see that the forecast is inaccurate due to the incorrect estimate produced at the
end of the assimilation window. For L1-regularisation (Figures 4 and 6) these problems do not
occur.
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Figure 1: Results for 4DVar applied to the linear advection equation where the initial condition
is a square wave. We take perfect observations at each point in time and space over the
assimilation interval which is 40 time steps. The four plots show the initial conditions at t = 0
and the result after 20, 40 and 80 time steps. 4DVar leads to oscillations in the initial condition.
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Figure 2: Results for L1-regularisation for the same data as in Figure 1. L1-regularisation
gives the best possible result for the initial condition.

In the next two subsections we change the experimental design of the problem slightly, in
order to check the robustness of L1-norm regularisation.
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Figure 3: Results for 4DVar for the same data as in Figure 1 but with perfect observations

every 20 points in space and every 2 time steps. 4DVar leads to oscillations in the initial
condition.
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Figure 4: Results for L1-regularisation for the same data as in Figure 3. L1-regularisation
gives the best possible result for the initial condition.

5.2 Changing the background error covariance matrix

We take precisely the same experiment as in the previous subsection 5.1, however, we change
the background error covariance matrix from the identity matrix
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Figure 5: Results for 4DVar for the same data as in Figure 1 but with imperfect observations

every 20 points in space and every 2 time steps. 4DVar leads to bad oscillations in the
initial condition and also to a misplaced discontinuity in the forecast.
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Figure 6: Results for L1-regularisation for the same data as in Figure 5. L1-regularisation
gives the best possible result for the initial condition.

• to B = 0.01I so that background and observation error covariances are equal and we
put the same emphasis on background and observations. Furthermore, for this example,
instead of taking a zero background we use U0

b (x(j)) = U0(x(j)) − 0.1, a shifted initial
condition, which is closer to the truth and has an error within the specified variance.
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• to a Gaussian covariance matrix B with entries

Bij = e−
|i−j|

2L2 , where L = 5. (20)

Hence B is a symmetric matrix with diagonal entries equal to unity and off-diagonal
entries that decay exponentially. This background error covariance matrix spreads the
information from the observations more adequately and the error variance is still unity.
Note that for this matrix the inverse is a tridiagonal matrix. For the background we again
choose U0

b = 0, which has errors consistent with the choice of B.
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Figure 7: Results for 4DVar for the same data as in Figure 5, but for B = 0.01I and a different
background estimate.

We only present the results for imperfect and partial observations, as this represents the most
realistic case.

Figures 7 - 8 show the results for Example 1, when B = 0.01I. Clearly, L1-regularisation
gives the best possible result.

Figures 9 and 10 show the results where the matrix B from (20) is used as a background
error covariance matrix. For this choice of B, the results for 4DVar (Figure 9) are better than
the results for the diagonal matrix B (Figure 5) because information is spread via the B matrix.
However, L1-norm regularisation (Figure 10) still behaves consistently better than L2-norm
regularisation (Figure 9).

5.3 Changing the length of the assimilation window

Again, we take the same experimental data as in Subsection 5.1; this time, however, we reduce
the size of the assimilation window from 40 time steps to 5 time steps and carry out the following
test: we take imperfect observations every 5 points in space and every 2 time steps with Gaussian
noise of mean zero and variance 0.01.
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Figure 8: Results for L1-regularisation for the same data as in Figure 7.
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Figure 9: Results for 4DVar for the same data as in Figure 5, but for B with Bij = e−
|i−j|

2L2 ,
where L = 5.

Figures 11 and 12 show the results for Example 1, where the linear advection equation is
used as a model and the size of the assimilation window is reduced. The first observation that
we can make is that again the regularisation using the L1-norm (Figure 12) is consistently better
than that using the L2-norm (Figure 11). Standard 4DVar produces oscillations, in particular in
the initial conditions, whereas the L1-norm regularisation does not show any oscillations. The
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Figure 10: Results for L1-regularisation for the same data as in Figure 9.
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Figure 11: Results for 4DVar applied to the linear advection equation where the initial condition
is a square wave. We take imperfect observations every 5 points in space and every 2
time steps over the assimilation interval which is 5 time steps. The four plots show the initial
conditions at t = 0 and the result after 5, 20 and 45 time steps. 4DVar leads to oscillations in
the initial condition and a misplaced discontinuity in the forecast.

oscillations in the initial conditions in standard 4DVar then lead to errors in the forecast (see
plots for t = 5, t = 20 and t = 45 in Figure 11). We observe also that for a smaller assimilation
window, the oscillations in the 4DVar analysis are smaller than those in the larger assimilation
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Figure 12: Results for L1-regularisation for the same data in Figure 11. L1-regularisation
gives the best possible result for the initial condition.

window (compare the first plot in Figure 11 with the first plot in Figure 5). The primary reason
is that there are fewer errors over the time interval for which the initial data must compensate
on average.

6 The Burgers’ equation - Example 2

Consider the inviscid Burgers’ equation

ut + uux = 0

that is equation (14), where the function f is given by (16), with initial conditions

u(x, 0) =

{
2, 0 ≤ x < 2.5

0.5, 2.5 ≤ x ≤ 10.

Discretising these we obtain
x(j) = 10(j − 1/2)∆x; (21)

U0
j =

{
2, 0 ≤ x(j) < 2.5

0.5, 2.5 ≤ x(j) ≤ 10,
(22)

with ∆x = 1

N and j = 1, . . . , N . We are interested in this equation as the solution forms a shock
front that moves forward in time. The method of characteristics results in a Riemann problem
and its solution is given by

u(x, t) =

{
2, 0 ≤ x < 2.5 + st

0.5, 2.5 + st ≤ x ≤ 10,
(23)
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where s = 1.25 is the shock speed. We use this result as the perfect model which generates the
true solution to the problem. It is also used to generate the observations. For the imperfect
model we choose one of the numerical solutions to the problem, namely the Lax-Friedrich method
(18) or the Lax-Wendroff method (19).

It is well-known that the Lax-Friedrich method leads to smearing out the shock and hence
introduces a model error there. The Lax-Wendroff method recovers the shock speed but leads
to oscillations near the shock and hence a model error is introduced via this numerical scheme.
We refer to LeVeque (1992) and Morton and Mayers (2005) for details. We implement both
methods in 4DVar with L2-regularisation and L1-regularisation.

6.1 Lax-Friedrich method

The model equations for the Lax-Friedrich method are given by (18) for j = 1, . . . , N , where
f is given by (16), and hence a model error is introduced. The true states in this case are
given by the exact solution to Burgers’ equation (23). For the initial conditions U0(x(j)) in the
imperfect model we use (22) for comparison. For the background U0

b (x(j)) we take U0
b (x(j)) =

U0(x(j)) − 0.1, a shifted initial condition.
For all our tests we use the background error covariance matrix B from (20) in Section 5

and R = 0.01I, since we put more emphasis on the observations than on the background. As
we have seen in Section 5, this choice for matrix B gives better results for 4DVar than a simple
diagonal matrix. Furthermore, ∆t = 0.001, N = 100 and the length of the assimilation window
is 100 time steps. After the assimilation period we compute the forecast for another 100 time
steps, hence, 200 time steps are plotted in total. We test the same cases as in Subsection 5.1,
that is perfect full observations, perfect partial observations and imperfect partial observations.

For all cases we test 4DVar with both L2-norm and L1-norm regularisation. We only show
the results for imperfect observations as this is the most realistic case. However, we observe that
for perfect (full and partial) observations, 4DVar leads to oscillations near the discontinuity at
the initial condition whereas L1-norm regularisation gives the best possible result.

Specifically, if we take perfect observations everywhere in time and space, the final solution
for 4DVar leads to oscillations in the initial condition, and hence the incorrect initial condition
for the forecast. Over the assimilation and forecast period this error is decaying. The analysis
for L1-regularisation, however, coincides with the model solution, the best possible solution.
This is true for both the initial condition and the forecast period.

If we consider perfect observations, but made only partially in space and time, again the
final solution for 4DVar leads to oscillations in the initial condition and, therefore, the incorrect
initial condition for the forecast. Since not enough observations are available this inaccurate
initial condition leads to the wrong position of the shock front in the forecast. On the other
hand the final solution for the L1-regularisation coincides with the model solution.

The third case treats both partial and imperfect observations; the result for 4DVar is shown
in Figure 13, the result for L1-regularisation in Figure 14. The analysis for 4DVar does not
resemble the true initial condition at all (first plot t = 0 in Figure 13). The RMS error and the
oscillations are decaying over the assimilation period, but are still showing the wrong position
for the shock in the forecast. For L1-regularisation however (see Figure 14), we get the best
possible solution.
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Figure 13: Results for 4DVar applied to Burgers’ equation where the initial condition is a step
function and the Lax-Friedrich method is applied to solve the problem. We take imperfect

observations every 20 points in space and every 2 time steps over the assimilation
interval which is 100 time steps. The four plots show the initial condition at t = 0 and the result
after 50, 100 and 200 time steps. 4DVar leads to oscillations in the initial condition and to the
wrong position for the shock front in the forecast.

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

 

 
Truth
Imperfect model
Final solution

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

 

 
Truth
Imperfect model
Final solution

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

 

 
Truth
Imperfect model
Final solution

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

 

 
Truth
Imperfect model
Final solution

Figure 14: Results for L1-regularisation applied to the same problem as in Figure 13. L1-
regularisation gives the best possible result for the initial condition.
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6.2 Lax-Wendroff method

The model equations for the Lax-Wendroff method in conservative form are given by (19). It
is well-known that by using the Lax-Wendroff method oscillations will appear near the shock;
however, it does not smear out the shock and recovers the shock speed correctly. The true
states in this case are again given by the exact solution to Burgers’ equation (23). For the
initial conditions U0(x(j)) in the imperfect model we use (22) again for comparison. For the
background U0

b (x(j)) we use U0
b (x(j)) = U0(x(j)) − 0.1, a slightly shifted initial condition.

We use B = 0.01I, R = 0.01I and otherwise the same data and experimental tests as for the
Lax-Friedrich method. We only show the results for the imperfect observations here, as they
represent the most realistic case.
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Figure 15: Results for 4DVar applied to the Burgers’ equation where the initial condition is a
step function and the Lax-Wendroff method is applied to solve the problem. We take imperfect

observations every 20 points in space and every 2 time steps over the assimilation interval
which is 100 time steps. The four plots show the initial conditions at t = 0 and the result after
50, 100 and 100 time steps. 4DVar predicts the wrong position for the shock front in the forecast.

Figures 15 and 16 show the results for Example 2, where the Lax-Wendroff method is used
for the model equations and imperfect partial observations are made. The result for L1-norm
regularisation is better than the result for 4DVar throughout the assimilation window and the
forecast.

From Figure 15 we see that the assimilation of the observations using 4DVar leads to small
errors in the initial conditions (see first plot in Figures 15). These errors lead to a slightly
incorrect position for the shock in the forecast (see last plot in Figure 15). The solution for L1

regularisation, shown in Figure 16, is equal, however, to the model solution, which is the best
possible result.

Note that for Burgers’ equation we also tested the change of the background error covariance
matrix and the change of the size in the assimilation window. We found similar results as for
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Figure 16: Results for L1-regularisation with the same setup as in Figure 15. L1-regularisation
gives the best possible result for the initial condition.

the linear advection equation in Section 5.
We also note that we have tested several different values for p in equation (13). However,

the best results were obtained when p was smaller than 1.01.

7 A shock formation in Burgers’ equation

We next consider Burgers’ equation (14) with f given by (16) again, where instead of (22) we
have initial conditions

U0(x(j)) = sin(2πx(j)/10) +
1

2
sin(πx(j)/10)

and x(j) is given by (21). In this case, a shock develops in finite time leading to evolving high
gradients in the forecast model.

For this problem we take the upwind scheme given by (17) with f given by (16) as the exact
model (the ’Truth’), from which we take the observations. The output of the Lax-Friedrich
method is taken as the model for the data assimilation process (and thereby, a model error
is introduced). For our tests we use B from (20) and R = 0.01I. Furthermore, ∆t = 0.001,
N = 100 and the length of the assimilation window is 100 time steps. We compute a further
100 time steps for the forecast, so in total 200 time steps are calculated. For this problem we
carry out the following test: We take imperfect observations at every 20th point in space and
every second time step; for the observations we introduce Gaussian noise with mean zero and
variance 0.01. We test 4DVar with both L2-norm and L1-norm regularisation.

Figures 17 - 19 show the results for this example. In Figure 17 the result for 4DVar is plotted,
in Figure 18 the result for L1-regularisation is shown. We immediately see that L1-regularisation
recovers the initial condition much more accurately than standard 4DVar with L2-regularisation
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Figure 17: Results for 4DVar applied to the Burgers’ equation where the initial condition is
U0(x(j)) = sin(2πx(j)/10) + 1

2
sin(πx(j)/10) and an upwind method is applied to solve the

problem. We take imperfect observations every 20 points in space and every 2 time

steps over the assimilation interval which is 100 time steps. The four plots show the initial
conditions at t = 0 and the result after 50, 100 and 200 time steps. 4DVar leads to severe
oscillations in the initial condition which are propagated into the forecast.
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Figure 18: Results for L1-regularisation applied to the same setup as in Figure 17. L1-
regularisation gives the best possible result for the initial condition.
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Figure 19: Root mean square error for data assimilation using Burgers’ equation with initial
conditions U0(x(j)) = sin(2πx(j)/10) + 1

2
sin(πx(j)/10) and an upwind scheme applied to solve

the problem. The plot on the left shows the result for 4DVar. The plot on the right shows the
result for L1-norm regularisation.

(see the first plot in Figure 17, which shows severe oscillations versus the first plot in Figure 18
which gives a perfect match with the best possible solution). The oscillations that are produced
with 4DVar can still be seen in the forecast after 200 time steps (see last plot in Figure 17 whilst
L1-norm regularisation produces the best possible forecast (see final plot in Figure 18).

Figure 19 shows the root mean square error for this example and therefore summarises the
results in Figures 17 and 18. We observe that the dashed line, the error before the assimilation
process, is the same for 4DVar and L1-regularisation (note the different scales in the two graphs).
However, for 4DVar the initial error is very large compared to the initial condition error using
L1-norm regularisation.

8 The Lorenz equations

In this last section we apply both 4DVar and L1-regularisation to the Lorenz model (Lorenz
(1963)), a system of three first order coupled, nonlinear ordinary differential equations for the
variables x, y and z,

ẋ = σ(y − x),

ẏ = ρx − y − xz,

ż = xy − βz,

with initial conditions x(0) = x0, y(0) = y0 and z(0) = z0 and parameters σ = 10, ρ = 28 and
b = 8/3. There are no discontinuities present in this problem. However, we use this test in order
to check if L1-regularisation also performs well for problems without a shock or sharp front. As
initial conditions for this problem we use x0 = y0 = z0 = 1. Furthermore ∆t = 0.01, and the
length of the assimilation window and the subsequent forecast is 200 time steps, so 400 time
steps are considered in total. For the ’truth’ we take the solution to the Lorenz equations using
a 4th-order Runge-Kutta method. This perfect model is also used to generate the observations.
Noisy observations are taken in all 3 variables at every time step with R = 0.2I. We use B = I.
For the imperfect model we use the solution obtained using the explicit Euler method. Thereby
we introduce a model error.
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Figure 20: Root mean square error for data assimilation applied to the Lorenz equations. The
plot on the left shows the result for 4DVar. The plot on the right shows the result for L1-norm
regularisation.

Figure 20 shows the results obtained where observations are assimilated into the Lorenz
model using 4DVar or L1-norm regularisation. The dashed line represents the RMS error before
the observations are assimilated - the solid line shows the RMS error after the assimilation
process. We see that both 4DVar and L1-regularisation give similar results, establishing that
L1-regularisation does not do worse than 4DVar for problems without sharp fronts.

9 Conclusions and future work

In this paper we have presented L1-regularisation, a new approach for variational data assimi-
lation. We have given several numerical examples where shock fronts were present or developed
in order to show that L1-norm regularisation gives much better results than the standard 4DVar
technique.

Future work will be to apply this technique to higher dimensional and possibly multi-scale
problems. Because the minimisation process for the L1-norm approach in (12) is more involved
than that for the standard approach in (11), practical implementations for L1-norm regularisa-
tion will also have to be examined together with the efficiency of this new approach.
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