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Abstract

The migration of liquids driven by capillary forces in passage networks of porous media, such as sand, has

been commonly considered at saturation levels relevant to pore dimensions. In this letter we reveal a very-low-

saturation regime where the relevant length scales of the transport mechanics are defined by the grain roughness

and by the capillary bridges at the contact points between grains. We demonstrate theoretically and support

experimentally that this migration (or spreading) is a complex interplay between capillary pressure, as defined

by the grain roughness and revealed by the bridges, and viscous losses of a microscopic, film-type, creeping

flow taking place within the roughness. Incorporating properties of the liquid bridges as reservoirs, namely

their pressure-volume dependence, yields the net macroscopic result which is a rather special case of diffusion,

so far identified only in certain regimes of plasma physics, namely the superfast non-linear diffusion process.

We propose a simple, but universal, model of this phenomenon and compare predictions with our experiments.

Non-volatile (persistent) liquids can spread significantly in porous substrates and cover large areas over long

periods of time before they can be removed by evaporation. For example we found in experiments that a 6µL

drop of Tris(2-ethylhexyl) Phosphate (TEHP), deposited on a bed of ordinary sand, covered a volume of ∼ 6mL

in fifteen days; which with a bed porosity of ∼ 30%, suggests an equivalent saturation level of s ∼ 0.3%. The

equilibrium vapor pressure of TEHP at room temperature is Ps ≃ 10−5 Pa, and for saturation s we use the

common definition of volume occupied by liquid divided by the volume of accessible pore space. If the sand grains

(average diameter of ∼ 250µm) were round and smooth, specific surface area of 0.01m2/g, this saturation level

translates to an average ”film” thickness of ∼ 100 − 200 nm, clearly a quantity that could be accommodated

within the roughness of the sand particles. But what happens before such low levels are reached, how quickly may

this happen, how far may this spreading process go, and in general how different is this regime in comparison to

the well-studied process of penetration at saturation levels relevant to the pore length scales? To answer those

questions we propose a macroscopic model based on microscopic principles describing transport at such low levels

of saturation and compare results with experiments conducted specifically for this purpose.

To understand the distinctive features of this low-saturation regime we first consider the morphology of the

liquid domains accommodated in a porous matrix consisting of spherical beads. This case has been investigated

in the context of the mechanical properties of wet granular materials [1-3]. The experiments have been conducted

with spherical glass particles of radii ranging from R0 = 140µm to R0 = 600µm agitated with water and allowed

to settle to equilibrium. It has been found that, depending on the saturation level, the liquid domains may

exhibit different topological features: (a) at the low end of saturations, smin < s < 7 − 8%, the liquid takes on

predominantly the form of isolated pendular rings (or liquid bridges) formed between the spherical particles at

the points of contact, (b) at higher saturations, 8% < s <≃ 24%, these bridges may coalesce into more complex

structures like trimers, pentamers and heptamers, and (c) with further increases in saturation even larger clusters

are found, untill finally at s ≈ 33% the larger cluster comprises about 90% of the liquid volume in the porous

matrix. The minimal value of the saturation at the onset of bridge formation (this also corresponds to the level

at which the system loses its cohesive property) was found to be about smin ≃ 0.2%, [3].

Therefore it may be anticipated that in a more general case of natural systems, where a wetting liquid spreads

in a matrix of roundish particles with rough surfaces, a similar trend with saturation levels applies; namely, two
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principal regimes of spreading in particulate porous media: (a) a low-saturation regime, which is our present focus,

in the range smin < s < smax, where smax is a saturation level at which the liquid loses connectivity at the pore

scale and, if the particles are impermeable, the transport may only occur within the roughness on the surfaces

of the constituent particles, and (b) a high-saturation regime, in the range s > smax, where the liquid domain is

almost continuous everywhere, and the penetration process has a character of multiphase flow commonly studied

in soil sciences [4]. (In the water-glass system smax ≃ 24%, and in our system we have found smax as low as 20%

using Micro X-ray Computer Tomography (MicroXCT) imaging, Fig. 1.) The relevant length scales are those of

the roughness and the pores respectively, and gravity may be significant in the latter case only.

In accordance with the above, the saturation should actually be split into two contributions, s = sp + sr,

where sp corresponds to the liquid within the bridges and sr to the liquid in the film contained within the surface

roughness. As such, the process of migration of liquids in particulate porous media actually is an interplay between

those two components, which clearly, in terms of the local capillary pressure must be in quasi-equilibrium. We

show below that this can be expressed in the general form of Darcy’s law [4], where the bridges are quantified so

as to provide the average capillary pressure, while the film within the surface roughness controls the permeability.

That is, the dynamics of continuous distributions of macroscopic (locally-averaged quantities) pressure p, velocity

v, and saturation s, relating liquid flux density q = φsv to the pressure gradient will be expressed by:

q = −
k(s)

µ
∇p, (1)

while for the equation of continuity we have:

∂φ s

∂t
+ ∇(φ sv) = 0 (2)

where µ is viscosity of the liquid, and k(s) and φ are the permeability and porosity of the porous network

respectively.

For any macroscopic elementary volume in the porous matrix, one can relate the average pressure with the

average amount of liquid contained in the capillary bridges, and thus with the saturation sp. In the case of

identical spheres (though not only) a relationship between the volume of the bridge and the mean curvature of

the free surface of the bridge, and thus the pressure in the liquid, is available in an analytical although rather

complex form [5]. In the case of two identical spheres in contact, for near-complete wetting systems, we have found

that one can approximate (with maximum error less than 1%) normalised mean curvature HR0 to normalised

volume VpR
−3

0
dependence derived in [5] by:

HR0 = C0 − C1(VpR
−3

0
)γ (3)

with γ = −0.516±0.001, which is consistent with the estimates obtained in [3] on p.229, and C1 = 1.3±0.002, C0 =

3.7 ± 0.01. The negative value of γ ≈ −0.5 is crucial in what follows.

Now, with the help of (3) the saturation s can be linked with the capillary pressure p = 2σH in the liquid

bridges. Indeed, in a system of equal-size particles sp = α−1
p VpR

−3

0
, αp = 4π

3Nc

φ
1−φ

, Nc being the particle (liquid

bridge) coordination number. Our experimental observations using MicroXCT reveal that for the sands used in

our experiments Nc lies between 7 and 8. So, s = α−1
p VpR

−3

0
+ sr and

p(s) =
2σ

R0

{

C0 − C1 α
γ
p(s− sr)

γ
}

. (4)

On the other hand, since the liquid flux in the low saturation regime occurs over the surface elements of the

grains and through the bridges, the coefficient of permeability is defined by the topology of the surface roughness.

It has been established previously, in the case of capillary flows over surfaces carved with various kinds of grooves
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[6], and in a general case of quasi-static distribution of wetting liquids on rough surfaces [7], that the liquid

completely fills the grooves (and here we assume that those results are applicable to our system too), so that

k ≈ k0 = const and sr ≈ s0r = const ≈ 1−φ
φ

3∆R0

2R0

, where we have associated the size of the groove h0 with the

characteristic length scale of the surface roughness, ∆R0. Moreover, in [6] it was found that the flow field obeys

a local Darcy’s law, u = −κ
µ
∇ψ, where u is the velocity averaged over the groove length scale, ψ is the local

liquid pressure, and κ is a local permeability. The latter is in general a function of geometric properties of the

groove and the contact angle θ. For our case here θ ≈ 0 and κ is roughly proportional to the surface area of the

groove cross-section κ ≈
∆R2

0

32π
. If we now apply intrinsic liquid phase averaging, < ... >l= V −1

l

∫

Vl

... dV , over the

liquid volume Vl contained within the averaging volume V to the local Darcy’s law, and make use of the spatial

averaging theorem [8], we find

< u >l= −
κ

µ
∇ < ψ >l= −

κ

µ
∇p.

Now we consider a macroscopic surface element of area S and reduce the above equation to the area of entrances

and exits for the liquid phase Se through that surface element S, to obtain the liquid flux in (1)

q = −
κ

µ

Se

S
∇p.

The coefficient of permeability in (1) is thus obtained as k0 = κSe

S
, which may be given by k0 ≈ 3 (1−φ)

∆R3

0

32πR0

,

since Se

S
≈ 3(1 − φ)∆R0

R0

. More accurate estimation of the permeability and the film content as a function of

saturation would need more detailed analysis of the flows over rough, and curved surfaces.

Now, using (4) one can cast (1) and (2) into a single non-linear diffusion equation,

∂s

∂t
= D0∇

(

∇s

(s− s0r)
1−γ

)

with D0 =
2σ

R0

k0

µ

C1|γ|α
γ
p

φ
, (5)

which is complemented with the boundary condition s = sF > s0r at the front moving with the velocity

v = −D0

∇s

sF (sF − s0r)
1−γ

.

Changing to new non-dimensional variables s̃ = (s − s0r)/smax, x̃ = x/L and t̃ = t/t0 with t0 = L2s1−γ
max/D0,

smax and L being the maximum value of saturation and characteristic length scale at t = 0 respectively, we finally

have
∂s̃

∂t̃
= ∇

(

∇s̃

s̃1−γ

)

. (6)

In our case considered here γ < 0, which suggests that equation (6) belongs to the class of superfast non-linear

diffusion equations found previously in a few applications in plasma physics [9]. The principal difference in the

behaviour of solutions between the known porous-medium class of equations (PME) (γ > 1) and the superfast

diffusion equation (SFDE) (γ < 0) is in the motion of the front and in the absence of self-similarity solutions to

(5) in general [9]. In the case γ > 1, the small values of s̃ ≈ 0 at the front lead to the so called stagnation, for

which ṽ ≈ 0 and waiting times occur before the front effectively starts moving [10]. This is clearly not the case in

SFDE problems where, on the contrary, the front speed increases when the boundary value of s̃ decreases, though

this may be moderated by the gradient of s. The absence of self-similarity solutions, on the other hand, leads

to dependence of wet-volume propagation law on the initial conditions to (5). In particular, this manifests itself

as different exponents q of the wet-volume-to-time power law V (t) ∼ tq found in our experiments with different

initial distributions, see some examples later in the text.

Now, we use this SFD model to address the rates of spreading at the special, low-saturation regime found in

our experiments. As the test liquid we choose persistent TEHP obtained from Sigma-Aldrich [CAS 78-42-2] and as
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the granular medium we use Standard Ottawa Sand (EMD Chemicals, Inc., p/n SX0075); it has an average grain

size of 250µm, porosity of 30% and surface roughness in the range 0.25 < ∆R0 < 3µm [11]. The TEHP liquid

has coefficient of surface tension σ = 29 mN/m, measured in our laboratory at 25◦ C and viscosity µ ≃ 15mPa · s

at 20 ◦ C [12]. The contact angles of TEHP measured from the image of a drop placed on either a sufficiently

smooth or a rough flat glass surface were found to be close to θs
1 ≈ 10◦ and θr

1 ≈ 0◦ respectively, so that this

choice of materials guaranties both effective capillary spreading and persistence.

The experiments were carried out by depositing imperceptibly a few microliter drops on naturally-packed sand

beds, and following the evolution of the wet spot by time-lapse photography aided by UV-excited fluorescence

using soluble Couymarin dye at concentration of 1% (w/w); the liquid properties remain unaffected. Experiments

were run both in a full and a half-symmetry geometry modes; the latter made possible by a transparent, lyophobic

wall (Teflon-coated glass) that allows optical access from the side (Fig. 2). The arrangement was left undisturbed

for the duration of the tests, extending out to more than 10 days, and photographs were taken by two 10.7 MP

computer-controlled digital cameras equipped with macrolenses and focused to resolve individual grains (Fig.

2). The lenses were fitted with longpass glass coloured filters to cut off scattered excitation light, such that no

significant background signal could be detected in the absence of the dye in the range of exposures used in the

experiments. Moreover, we have taken images at different values of the exposure to ensure confident capture of

the wetted front position and have performed several multiply repeated series of experiments with different initial

volume of the droplets at the full and half-symmetry geometries. In this way we found directly that, after some

short initial transition period (sensitive to the details of the initial deposition), the shape of the wetted portion

of sand is close to a hemisphere, Fig. 2, so that an equivalent wet volume and an average saturation can be

accurately calculated from the measured radius of the wet area.

The results of two representative tests, involving two side-by-side 2.8µL drops, at the full symmetry geometry

are summarized in Fig. 3. The figure shows two main transition points that correspond to the start and the

ending of the SFD regime and the limit saturation slim when the spreading stops. The corresponding saturations

are found to be s ≃ 20%, s ≃ 1% and slim ≃ 0.55%, wet-volume follows a power law V (t) ∼ tq with the exponent

q = 0.75. In Figure 4, we show the SFD regime portion of the transient for 5 spots all created with 6µL drops.

One of these was at the full symmetry mode and two at the half-symmetry mode (two each, one depicting the

volume based on the top surface of the bed and the other based on the side view). All 5 transients are well

represented by the time-law found in Fig. 3 with q = 0.65, which starts at s ≃ 10%. The spreading ends in all

cases close to slim ≃ 0.36%. One can notice a remarkable agreement in the value of q between the results obtained

in the half and the full symmetry modes. Similar tests with Tricresyl Phosphate (TCP), another persistent liquid

(σ = 42.5 mN/m, µ ≃ 20mPa · s, θs
1 ≈ 30◦, θr

1 ≈ 20◦), have shown a very analogous behaviour and q = 0.78.

As noted already, the limit saturation level corresponds to a uniform film of 100 − 200 nm suggesting that at the

limit saturation of slim ∼ 0.3− 0.6% the film may lose connectivity at the bridges, which is consistent with what

is known about the structural integrity of sands [2,3].

To compare the spreading law found in the experiments with what is predicted by our SFD model, we solve

problem (5) numerically assuming spherical symmetry. The problem has three parameters D0, sF and s0r and

unknown initial condition taken in the form s(r, 0) = sF + (sC − sF ) cos(πr/2)λ on r ∈ [0, 1] parameterized by

2 < λ < 4. In the simulations, we start at s ≃ 10% (the onset of the SFD regime in the case shown in Fig. 4)

and define sC from the experimental values. Parameter sF = 0.36% has been obtained from the limit saturation

slim observed in the experiments, which translates into ∆R0 ≃ 120 nm. Since the coefficient of diffusion D0 has

no effect on the power law and only rescales time, we have determined s0r = 0.88 sF by matching the power law

exponent q. Finally, the coefficient of diffusion D0 = 1.2 × 10−14 m2/s has been found by matching the whole

volume-to-time dependence, while λ, used for fine tuning only, was set to λ = 3.5. This value of the diffusion

coefficient corresponds to ∆R0 ≈ 160 nm at Nc = 8. The results of simulations are shown in Fig. 4.
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In conclusion, we have found experimentally the spreading law at very low saturations in granular porous

media. This regime initiates at liquid saturations s ≃ 20%, manifests itself as a power law and ends at s ≃ 1%.

The spreading stops at slim ≃ 0.3 − 0.6%, which is close to the level corresponding to the loss of structural

cohesion. We have shown by a comparison of experimental results with numerical solutions to our SFD model

that this spreading regime translates into a superfast non-linear diffusion process previously found only in certain

problems of plasma physics. The key physics in our case is capillary-driven creeping flow within the roughness-

defined channels, which are connected at the grain contacts by the liquid bridges. Our model can be easily scaled

down or up as needed to describe transport in fine nanoparticle assemblies or in coarse granular materials.
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Figure 1: Illustration of isolated bridges at low levels of saturations. (a) MicroXCT image, typical from our

experiments. (b) 3D image reconstruction of MicroXCT data. The liquid within the roughness of the sand grains,

as discussed further below, is invisible to MicroXCT.
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Figure 2: Illustration of the experimental setup in the full and in the half-symmetry geometries.
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Figure 3: Spreading of 2.8µL TEHP liquid drops in sand in full symmetry: 4 different tests. The dashed line

shows power law V (t) ∼ t0.75. The data points are so close in time that they merge into continuous lines.
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Figure 4: Spreading of 6µL drops of TEHP in sand. Full and half-symmetry geometries. Many in-between data

points were deleted for clarity of presentation. The solid and the dashed lines are numerical solutions to (5) for

6µL and 12µL drops respectively, which are roughly the power law V (t) ∼ t0.67. The wet volume in the 12µL

simulation is halved to mimic the half-symmetry case.
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