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Abstract

For certain observing types, such as those that are remotely sensed, the observa-
tion errors are correlated and these correlations are state and time-dependent. In this
work we develop a new method for diagnosing and incorporating spatially correlated
and time-dependent observation error in an ensemble data assimilation system. The
method combines an ensemble transform Kalman filter with a method that uses sta-
tistical averages of background and analysis innovations to provide an estimate of the
observation error covariance matrix.

To evaluate the performance of the method we run identical twin experiments using
the Lorenz ’96 and Kuramoto-Sivashinsky models. Using our approach we are able to
recover a good approximation of the true observation error covariance in cases where
the initial estimate of the error covariance is incorrect. We are also able to capture
spatial observation error covariances where the length-scale of the true covariance is
changing slowly in time. We find that using the estimated correlated observation error
in the assimilation improves the analysis.

1 Introduction

Data assimilation techniques combine observations with a model prediction of the state,
known as the background, to provide a best estimate of the state, known as the analysis.
The errors associated with the observations can be attributed to four main sources:

1. Instrument error.

2. Error introduced in the observation operator - these include modelling errors, such as
the misrepresentation of gaseous constituents in radiative transfer models, and errors
due to the approximation of a continuous function as a discrete function.

3. Errors of representativity - these are errors that arise where the observations can
resolve spatial scales that the model cannot.

4. Pre-processing errors - errors introduced by preprocessing of the data such as cloud
clearance for radiances.

For a data assimilation scheme to produce an optimal estimate of the state, the error
covariances associated with the observations and background must be well understood and
correctly specified [Houtekamer and Mitchell, 2005]. In practice many assumptions are
violated and the analysis provided by the assimilation may be far from optimal. Therefore
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to obtain an accurate analysis it is important to have good estimates of the observation
and background error covariance matrices to be used in the assimilation.

In previous work much attention has been given to the estimation of the background error
covariance matrix and as a result static background error covariance matrices are now often
replaced with flow dependent matrices that reflect the ‘errors of the day’ [Bannister, 2008].
Until recently less emphasis has been given to understanding the nature of the observation
error covariance matrix and the matrix is often assumed diagonal. The unknown errors,
such as the representativity error, and any other possible unaccounted for correlations, are
represented by inflating the error variance [Hilton et al., 2009, Whitaker et al., 2008], or
by using techniques such as observation thinning [Buehner, 2010] or ‘superobbing’ [Daley,
1991].

Although correlated observation errors are not widely accounted for in operation assimi-
lation schemes, methods do exist for calculating the observation error covariance matrix
[Hollingsworth and Lönnberg, 1986, Desroziers et al., 2005]. Recent work [Stewart et al.,
2009, 2013b, Bormann et al., 2002, Bormann and Bauer, 2010, Bormann et al., 2010] using
these methods has shown that for certain observing instruments the observation error co-
variance matrix is correlated. When these correlated errors have been accounted for in the
assimilation, it has been shown to lead to a more accurate analysis [Stewart et al., 2013a,
Stewart, 2010, Healy and White, 2005], the inclusion of more observation information con-
tent [Stewart et al., 2008] and improvements in the UK Met Office skill score [Weston,
2011]. Indeed, Stewart et al. [2013a] and Healy and White [2005] show that even the use of
a crude approximation to the observation error covariance matrix may provide significant
benefit.

The importance of accounting for correlated errors in the assimilation has led to the devel-
opment of new schemes that provide estimates of the observation error covariance matrix.
Miyoshi et al. [2013] use the diagnostic of Desroziers et al. [2005] (hereafter denoted the
DBCP diagnostic) embedded in a local ensemble transform Kalman filter to give an es-
timate of a static observation error covariance matrix. At each analysis step the DBCP
diagnostic is applied to a subset of observations to give an estimate for the observation error
covariance matrix. Their work focuses on convergence to a static observation error covari-
ance matrix. However, in previous work it has been shown that representativity errors are
time-dependent [Janjic and Cohn, 2006, Waller, 2013, Waller et al., 2013]. Therefore we
consider if it is possible to estimate an observation error covariance matrix that varies in
time.

In this paper we introduce a new method that combines an ensemble filter with the DBCP
diagnostic. Our method uses statistics from observations over a short period of time to
produce a slowly time varying estimate of the observation error covariance matrix that is
then used in the assimilation.

In section 2 we describe the ensemble filter that can be used to provide a time varying
estimate for correlated observation error. Our experimental design is given in section 3
and we present our numerical results in section 4. Finally in section 5 we conclude that,
as demonstrated in experiments using simple models, it is possible to use the proposed
method to provide an estimate of spatial observation error correlations that vary slowly in
time.
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2 Estimating the observation error covariance matrix with

the ensemble transform Kalman filter

Data assimilation techniques combine observations yn ∈ R
Np

at time tn with a model
prediction of the state, the background x

f
n ∈ R

Nm
, which is often determined by a previous

forecast. The observations and background are weighted by their respective errors, to
provide a best estimate of the state xa

n ∈ R
Nm

, known as the analysis. This analysis is
then forecast using the possibly non-linear model Mn to provide a background at the next
assimilation time,

x
f
n+1 = Mn(x

a
n). (1)

We now give a brief overview of the ensemble transform Kalman filter (ETKF) [Bishop
et al., 2001, Livings et al., 2008] that we will adapt and the notation that is used in
this study. At time tn we have an ensemble, a statistical sample of N state estimates
{

xi
n

}

for i = 1 . . . N . These ensemble members are stored in a state ensemble matrix
Xn ∈ R

Nm
×N where each column of the matrix is a state estimate for an individual

ensemble member,
Xn =

(

x1
n x2

n . . . xN
n

)

. (2)

It is possible to calculate the ensemble mean,

x̄n =
1

N

N
∑

i=1

xi
n, (3)

and subtracting the ensemble mean from the state ensembles gives the ensemble perturba-
tion matrix

X′

n =
(

x1
n − x̄n x2

n − x̄n . . . xN
n − x̄n

)

. (4)

This allows us to write the ensemble covariance matrix as

Pn =
1

N − 1
X′

nX
′

n
T
. (5)

For the ensemble transform Kalman filter (ETKF) the analysis at time tn is given by,

x̄a
n = x̄f

n +Kn(yn −Hn(x̄
f
n)), (6)

where x̄a
n is the analysis ensemble mean and x̄

f
n is the forecast ensemble mean. The possibly

non-linear observation operator H : RNp

→ RNm

maps the state space to the observation
space . The Kalman gain matrix,

Kn = Pf
nH

T
n (HnP

f
nH

T
n +Rn)

−1, (7)

is a matrix of size Nm × Np where Hn is the observation operator linearised about the
background state. The observation error covariance matrix is denoted byRn ∈ R

Np
×Np

and
P

f
n ∈ R

Nm
×Nm

is the forecast error covariance matrix. When the forecast error covariance
is derived from climatological data and assumed static, it is often denoted as Bn and known
as the background error covariance matrix.

Previously it has been assumed that the observation error covariance matrix R is diagonal.
However, with recent work showing thatR is correlated and state dependent, it is important
to be able to gain accurate estimates of the observation error covariance matrix. Here we
propose a new method that combines the DBCP diagnostic with an ensemble transform
Kalman filter (ETKF) [Bishop et al., 2001, Livings et al., 2008], to provide an estimate of
time varying correlation observation error matrices that can be used within the assimilation
scheme. We begin by describing the diagnostic proposed in Desroziers et al. [2005].
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2.1 The DBCP diagnostic

The DBCP diagnostic described in Desroziers et al. [2005] makes use of the background
(forecast) and analysis innovations to provide an estimate of the observation error covari-
ance matrix. The background innovation, db = y − H(xf ), is the difference between the
observation y and the mapping of the forecast vector, xf , into observation space by the
observation operator H. The analysis innovations, da = y −H(xa), are similar to the the
background innovations, but with the forecast vector replaced by the analysis vector xa.
Making the tangent linear hypothesis on the observation operator, taking the outer product
of the analysis and background innovations and assuming that the forecast and observation
errors are uncorrelated results in

E[dadbT ] ≈ R. (8)

This is valid if the observation and forecast errors used in the gain matrix,

K = PfHT (HPfHT +R)−1, (9)

to calculate the analysis, are the exact observation and forecast errors [Desroziers et al.,
2005]. However, provided that the correlation length-scales in Pf and R are sufficiently
different, it shown that a reasonable estimate of R can be obtained even if the R and Pf

used in K are not correctly specified. It has also been shown that the method can be
iterated to estimate R [Mènard et al., 2009, Desroziers et al., 2009].

Much of the previous work using the DBCP diagnostic to estimate observation error covari-
ance matrices has considered variational data assimilation methods [Bormann and Bauer,
2010, Bormann et al., 2010, Stewart et al., 2009, Stewart, 2010, Stewart et al., 2013b,
Weston, 2011]. As ensemble filters and hybrid methods are becoming more important
in operational data assimilation [Buehner et al., 2010, Miyoshi et al., 2010, Clayton et al.,
2012] we consider the use of the DBCP diagnostic when using an ensemble data assimilation
method with flow dependent forecast error statistics.

2.2 The ensemble transform Kalman filter with R estimation

We first give a brief overview of the proposed method, the ensemble transform Kalman filter
with R estimation (ETKFR), before discussing it in further detail. The idea is to estimate
the observation error covariance matrix within the ETKF. We use the ETKF to provide
the samples of the background and analysis innovations to be used in the DBCP diagnostic.
After the initial ensemble members, forecast error covariance matrix and observation error
covariance matrix are specified, the filter is split into two stages, a spin-up phase where
the matrix R remains static and a ‘varying estimate’ stage. The spin-up stage is run
for a predetermined number of steps, N s, and is an application of the standard ensemble
transform Kalman filter. In the second stage the DBCP diagnostic is used to provide a new
estimate of R that is then used within the assimilation. We note that for any assimilation
that is running continuously the spin-up stage need only be run once to determine the
initial samples required to estimate R. We now present in detail the method that we have
developed. Here the observation operator, H, is chosen to be linear, but the method could
be extended to account for a non-linear observation operatorH (e.g. Evensen [2003]).

Initialisation - Begin with an initial ensemble
{

xi
0

}

for i = 1 . . . N at time t = 0 that

has an associated initial covariance matrix P
f
0 . Also assume an initial estimate of the

observation error covariance matrix R0; it is possible that this could just consist of the
instrument error.
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Step 1 - The first step is to use the full non-linear model, Mn, to forecast each ensemble
member, xf,i

n+1 = Mn(x
a,i
n ).

Step 2 - The ensemble mean and covariance are calculated using (3) and (5).

Step 3 - Using the ensemble mean the background innovations at time tn, calculate and
store db

n = yn −Hx̄
f
n.

Step 4 - The ensemble mean is updated using,

x̄a
n = x̄f

n +Kn(yn −Hnx̄
f
n), (10)

whereKn is the Kalman gain Kn = X′f
nY

′f
n

T
S−1
n of size Nm×Np. Here Sn is the invertible

matrix Sn = Y′f
nY

′f
n

T
+Rn, where Y′f

n = HnX
′f
n is defined as the matrix containing the

mapping of the ensemble perturbations into observation space.

Step 5 - Rather than calculate the ensemble perturbation update explicitly, the analysis
perturbations are calculated as

X′a
n = X′f

nΥn, (11)

where Υn is the symmetric square root of (I −Y′f
n

T
S−1
n Y′f

n) [Livings et al., 2008].

Step 6 - The analysis mean is then used to calculate the analysis innovations, da
n = yn −H(x̄a

n).

Step 7 - If n > N s, where N s is the specified sample size, update R using

Rn+1 =
1

N s − 1

c=n
∑

c=n−Ns+1

da
cd

b
c

T
. (12)

Then symmetrise the matrix, Rn+1 =
1
2(Rn+1+RT

n+1). Otherwise keep Rn+1 = R0.

Many of the steps in the proposed method are identical to the ETKF. Step 7, along with
the storage of the background and analysis innovations in steps 3 and 6, are the additions
to the ETKF that provide the estimate of the observation error covariance matrix.

After initialisation, the method consists of two stages, a static R stage and a ‘varying
estimate’ stage. In the spin-up phase the algorithm is an application of the standard
ETKF. In this stage the method is iterated for a number of assimilation steps N s. Once
these assimilation steps are completed, a new time-averaged estimate of R is calculated
using the DBCP diagnostic from equation (8),

Rn+1 =
1

N s − 1

c=n
∑

c=n−Ns+1

da
cd

b
c

T
. (13)

Once this initial estimate of R has been calculated, the method moves into the ‘varying
estimate’ stage. In this stage it is possible to include and update the estimate of R used
within the assimilation. We continue running the ETKF using the updated Rn in place of
our initial guess for R. After the forecast and analysis stages we calculate a new estimate
for the observation error covariance matrix R by removing the oldest samples for db and
da and replacing them with those calculated in the current assimilation step.

At every assimilation step R is updated using the latest information, with the oldest in-
formation being discarded. Although this does not give a completely time-dependent esti-
mate of R it should give a slowly time varying estimate that should take into account the
most recent information relating to the observations. We now explain how the method is
tested.
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3 Experimental set up

3.1 The models

In order to demonstrate the ETKFR method we use two different models, the Lorenz ’96
model [Lorenz, 1996, Lorenz and Emanuel, 1998] and the Kuramoto-Sivashinsky equation
Kuramoto [1978], Sivashinsky [1977].

3.1.1 The Lorenz ’96 model

The Lorenz ’96 model is a method that has been widely used to test state estimation
problems [Anderson, 2001, Ott et al., 2004, Fertig et al., 2007]. The model emulates the
behaviour of a meteorological variable around a circle of latitude. The model consists of
Nm variables X1, . . . ,XNm on a cyclic boundary, that is X−1 = XNm−1, X0 = XNm and
XNm+1 = X1, which are governed by,

dXj

dt
= Xj−1(Xj+1 −Xj−2)−Xj + F. (14)

The first term on the right hand side simulates advection, whereas the second simulates
diffusion, and the third is a constant forcing term. The solution exhibits chaotic behaviour
for Nm ≥ 12 and F > 5 and to ensure that we see chaotic behaviour in our solution we
choose Nm = 40 and F = 8.

3.1.2 The Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky (KS) equation,

∂u

∂t
= −u

∂u

∂x
−

∂2u

∂x2
−

∂4u

∂x4
, (15)

is a non-linear, non-dimensional partial differential equation where u is a function of time, t,
and space, x. The equation produces complex behaviour due to the presence of the second
and fourth order terms. The equation can be solved on both bounded and periodic domains
and, when the domain is sufficiently large, the solutions exhibit multi-scale and chaotic
behaviour [Gustafsson and Protas, 2010, Egúıluz et al., 1999]. This chaotic and multi-
scale behaviour makes the KS equation a suitable low dimensional model that represents
a complex fluid dynamic system. The KS equation has been used previously for the study
of state estimation problems using both ensemble and variational methods [Protas, 2008,
Jardak et al., 2000].

3.2 Twin experiments

To analyse the ensemble transform Kalman filter with R estimation (ETKFR) we run
a series of twin experiments. We first describe how we calculate the observations, then
we provide details for the experiments using the Lorenz ’96 and Kuramoto-Sivashinsky
models.
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3.2.1 The observations

To create observations we must add errors from a specified distribution to the truth runs
of the models. We choose Rt = RD + RC to consist of uncorrelated errors RD = σ2

DI,
where σ2

D is the diagonal error variance, and correlated errors RC = σ2
CC, where σ2

C is
the correlated error variance and C is a correlation matrix. We use direct observations
with added uncorrelated observation error, which are calculated by adding pseudo-random
samples from N (0, σ2

DI) to the values of the truth. We then add correlated error to our
observations. As the correlation function we use the SOAR function,

ρ(i, j) = {cos(2ba sin(
θi,j

2
) +

sin(2ba sin(
θi,j
2 ))

Lb
}e

−2a sin(
θi,j

2
)

L , (16)

where ρ is the correlation between two points i and j on a circle and θi,j is the angle be-
tween them [Thiebaux, 1976]. The constants L, b and a determine the lengthscale of the
correlation function. We choose the SOAR function to approximate our correlated error
because at large correlation length-scales the SOAR resembles the observation error covari-
ance structure found in Bormann et al. [2002]. The SOAR function is used to determine
a circulant covariance matrix C. To specify a true correlated observation error covariance
matrix we multiply the circulant matrix by the correlated error variance which is chosen
to be σ2

C . The true observation error covariance matrix, Rt, is obtained by adding the
diagonal and correlated error covariance matrices RD and RC . Having a specified obser-
vation error covariance matrix allows us to determine how well the method is working as
the estimated matrix can be compared to the truth.

3.2.2 The Lorenz ’96 model

In this study we solve the system of equations using MATLAB’s (version R2008b) ode45
solver, which is based on an explicit Runge-Kutta formula [Dormand and Prince, 1980];
this uses a relative error tolerance of 1e-3 and an absolute error tolerance of 1e-6. To
generate the true solution the Lorenz equations are started from initial conditions where
Xj = 8, j = 1 . . . 40 with a small perturbation of 0.001 added to variableX20. The numerical
model provides output at intervals of ∆t = 0.01 until a final time of T = 50. A slightly
perturbed initial condition, created by adding pseudo-random samples from the distribution
N (0, σ2

b I), where σ
2
b is the forecast error variance, to the true initial condition, is used. From

this initial condition the N = 500 ensemble members are created by adding pseudo-random
samples from the initial forecast error distribution, which is chosen to also be N (0, σ2

b I).
A large number of ensemble members is used to minimise the risk of ensemble collapse
and to help obtain an accurate forecast error covariance matrix. For the purposes of this
initial study we wish to avoid using the techniques of covariance inflation and localisation
so as not to contaminate the estimate of R. We take 20 equally spaced direct observations,
calculated as described in Section 3.2.1, at each assimilation step. Constants for equation
(16) are chosen to be L = 6 and b = 3.6. We then consider time-dependent R where b varies
linearly with time according to b(t) = αt + β. The frequency varies between experiments,
with the chosen frequencies being observations available every 5 and 30 time steps, that is
every 0.05 and 0.3 time units respectively.

3.2.3 The Kuramoto-Sivashinsky equation

In this study the KS equation is solved using an exponential time differentiating Runge-
Kutta 4 (ETDRK4) numerical scheme. Details of this scheme, along with code to solve the
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KS equation are given in Cox and Matthews [2000] and Kassam and Trefethen [2005]. The
truth is defined by the solution to the KS equation on the periodic domain 0 ≤ x ≤ 32π
from initial conditions u = cos( x

16 )(1 + sin( x
16 )) until time T = 10000, using N = 256

spatial points and a time step of ∆t = 0.25. The assimilation model is run at the same
spatial and temporal resolution as the truth with ∆t = 0.25 and N = 256. We use a
slightly perturbed initial condition, created by adding pseudo-random samples from the
distribution N (0, σ2

b I) to the true initial condition. For the KS equation we choose to
use N = 1000 ensemble members as we are estimating a large number of state variables.
The N = 1000 ensemble members are created by adding pseudo-random samples from the
initial forecast error distribution, which is chosen to be N (0, σ2

b I), to the initial condition.
We take 64 equally direct observations, calculated as described in Section 3.2.1, at each
assimilation step. Constants for equation (16) are chosen to be L = 15 and b = 3.8; for some
experiments b is chosen to vary linearly in time according to b(t) = αt+ β. The frequency
varies between experiments, with the chosen frequencies being observations available every
40 and 100 time steps.

To show the effect of the method on the analysis we also run the ETKF without the R

estimation. In this case the R used in the assimilation consists of the diagonal of the true
observation error covariance matrix, R0 = diag(Rt).

We note that the ETKFR has been also been tested with different frequencies of observa-
tions in both time and space. The results presented here have been selected to demonstrate
the different behaviours of the method under certain conditions. The method was also run
with fewer ensemble members and appears to work well so long as the filter does not
diverge.

4 Results

We present the results from all our experiments in Tables 1 and 2. We give details of
the matrix used as the true observation error covariance matrix Rt. Tables 1 and 2 show
whether the ensemble transform Kalman filter with R estimation (ETKFR) is used, or
whether we run a standard ETKF using a diagonal observation error covariance. We also
provide the frequency of the observations and the variances for the initial forecast, diagonal
and correlated error variances. We give the time-averaged analysis root mean square error
(RMSE). The analysis RMSE at each time is calculated using,

RMSE =

√

∑Nm

j=1([x
a
n]j − [xt

n]j)
2

Nm
, (17)

where [xt
n]j is the jth element of the true state vector at time tn and [xa

n]j is the jth

element of the analysis at time tn. The RMSEs at every analysis step are averaged to
give the time-averaged analysis RMSE. The time-averaged analysis RMSE allows us to
compare the performance of the filter for each experiment. To provide an idea of how
well the ETKFR is performing we also give the RMSE of the covariance estimate at the
final time. The RMSE of the row of the estimated observation error covariance matrix is
calculated by comparing one row of the true observation error covariance matrix to the
average calculated covariance structure. As the true observation error covariance matrix is
isotropic and homogeneous the estimated observation correlation structure is calculated by
averaging the permuted rows of the covariance matrix. The permuted rows are rows that
have been shifted so that the variance lies in the same column. Rank histograms [Hamill,
2000] (shown in Waller [2013]) were considered to give information about the ensemble
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spread. If the ensemble spread is not maintained the analysis and the estimation of the
observation error covariance matrix may be affected.

4.1 Results with a static R and frequent observations

We begin by considering the case when the true observation error covariance matrix is
static.

In Experiments 1L and 1K we use the standard EKTF for the assimilation. We begin by
setting the true matrix Rt to Rt = RD + RC , where RD = 0.1I and RC = 0.1C. The
Lorenz ’96 and KS models are each run for 1000 assimilation steps. We assume that R

is diagonal, with R0 = diag(Rt). The standard ETKF is used to gain an estimate of R
after the assimilation. The background and analysis innovations are calculated throughout
the assimilation window. After the final assimilation these can be used to give an estimate
of the true observation error covariance matrix. This allows us to check that the filter is
working correctly and that the observation error covariance matrix can be calculated using
the DBCP diagnostic.

The time-averaged analysis RMSEs for these experiments using the Lorenz and KS models
are given in Tables 1 and 2, Experiments 1L and 1K. To show the performance of the
DBCP diagnostic we plot in Figure 1 the estimated observation correlation structure. We
see from the time-averaged analysis RMSE that the assimilation performs well and the rank
histogram (not shown) suggests that the ensemble is well spread. From Figure 1 we see
that even where it is assumed that R = diag(Rt) the DBCP diagnostic still gives a good
estimate of the true covariance with approximately correct length-scales. This suggests that
even if a correlated observation error covariance is initially unknown it should be possible
to use the DBCP diagnostic to estimate it. This is consistent with the results using 4D-Var
[Stewart et al., 2009, 2013b, Bormann and Bauer, 2010, Bormann et al., 2010].

We now consider what happens where we estimate R within the ETKFR assimilation
scheme described in Section 2 with N s = 100 for the Lorenz model and N s = 250 for the
KS model. We find that with the chosen number of samples, for the estimated covariance
matrix to be full rank, and hence used in the assimilation, it is necessary to compensate for
the sampling error. To compensate for the sampling error we make the matrix isotropic and
homogeneous by taking the mean of the shifted rows of the estimated matrix. The shifted
rows of the matrix have been permuted so that the variance lies in the same column. This
averaged row is then used to reconstruct a circulant matrix. This makes the assumption
that all the observations have the same correlation structure. It may also be possible to
overcome sampling error by increasing the number of samples; however, this reduces the
time-dependence of the estimation and hence we choose to compensate for the sampling er-
ror by making the matrix isotropic and homogeneous. We verify that the method proposed
is able to improve the analysis by including improved estimates of R in the assimilation
scheme.

We begin by assuming that the initial observation error covariance matrix consists of only
the diagonal error RD. The time-averaged analysis RMSEs for these experiments using the
Lorenz and KS models are given in Tables 1 and 2, Experiments 2L and 2K. We see that the
time-averaged analysis RMSEs are lower than Experiments 1L and 1K and this, together
with an improved ensemble spread, shows that overall the assimilation scheme performs
better than the case where the observation error covariance matrix is assumed diagonal. In
Figure 2 we plot the true covariance (solid) as well as the first estimate of the covariance
calculated using the first N s background and analysis innovations (dashed) and the last
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estimate of the covariance calculated using the last N s background and analysis innovations
(dot-dash). We note that as R is estimated using fewer samples than Experiments 1K
and 1L we expect the results to be more noisy due to the increased sampling error. By
comparison with Figure 1 we see that the first estimates of the covariance structure are
similar to that calculated in Experiment 1L and 1K. This is because all the innovations
used as samples were calculated assuming that R = RD. We see that the last estimates
of the covariance structure are closer to the true covariance structure. Overall the method
performs well and this suggests that updating the estimate of R at each assimilation step
in the ETKF improves the estimation of a static R. It also suggests that it should be
possible to gain a time-dependent estimate of correlated observation error.

4.2 Static R, infrequent observations

We now consider the case where observations are less frequently available. We begin by
running the standard ETKF with R = diag(Rt). Observations are available only every 30
timesteps (6 times less frequent) for the Lorenz ’96 model and 100 time steps (2.5 times less
frequent) for the KS model; therefore we have statistics from 166 and 400 assimilation steps.
Again we calculate the background and analysis innovations throughout the assimilation
and use these after the assimilation has ended to provide an estimate of the observation error
covariance structure. As there are fewer assimilation steps there are also fewer background
and analysis innovations that can be used to estimate R.

The time-averaged analysis RMSE and covariance RMSE for these experiment are given
in Tables 1 and 2, Experiments 3L and 3K. The time-averaged analysis RMSE suggests
that the analyses are not as accurate as Experiments 1L and 2L and Experiments 1K and
2K. This is because with less frequent observations the model solutions have more time
to diverge from the true solution before being constrained by the observations. However,
the assimilation still provides a good analysis and the rank histograms suggest that the
ensemble spread is maintained. For Experiment 3L the covariance function is still estimated
well. However, the estimate of the covariance function for Experiment 3K is not as good as
Experiment 1K. This suggests that the larger temporal spacing between observations may
affect how well the DBCP diagnostic estimates R.

We now estimate R within the ETKFR scheme and then reuse the estimated R at the next
assimilation step. As our initial error covariance we choose the diagonal error covariance,
R = RD. We see from Experiment 4L Table 1 and Experiment 4K Table 2 that the
time-averaged analysis RMSE is lower than the case when R was assumed diagonal and
fixed throughout the assimilation. We now consider if the ETKFR can give an improved
estimate of the covariance structure. Considering the covariance estimate RMSE we see
that for Experiment 4L the method works well and a good estimate of the the covariance
matrix is provided (not shown). We find that for Experiment 4K the structure of the
covariance function is improved from the initial diagonal, but does not match the truth as
closely as in experiment 2K. This is partly because some of the background and analysis
innovations were calculated using the diagonalR. As we are considering a static observation
error matrix we expect the estimated R to improve with every assimilation step. If the
assimilation is run for longer period of time, and the estimate of Pf is accurate, we would
expect the estimated R to converge to the truth [Mènard et al., 2009]. We now return to
the the case of more frequent observations, but consider a time-dependent true R.
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4.3 Time dependent R

We now consider the case when the true R is time-dependent and only consider the scheme
where R is estimated and used within the assimilation. We choose the correlation to be
the SOAR function as described by equation (16). To create time-dependence we vary
the length-scale with time according to b(t) = αt + β, the chosen α and β are detailed
in Tables 1 and 2. We set the variance of the correlated error matrix to σ2

C = 0.1. We
show that it is possible to use the ETKF and DBCP diagnostic to estimate a time varying
observation error covariance matrix. To show how well the filter is performing we give the
time-averaged analysis RMSE in Tables 1 and 2 Experiments 5L and 5K.

We see that the time-averaged analysis RMSE is low suggesting that the assimilation is
working well and the rank histogram shown in Waller [2013] suggests that the ensemble
spread is maintained. We now show how well the DBCP diagnostic estimates the true
observation error covariance matrix. For Experiment 5K we plot the estimates at every
100 assimilation steps in Figure 3. We see that the first estimate of R captures the true
correlation structure well. Considering the estimates at each of the times plotted we see
that the true correlation structure is well approximated. The ETKF with R estimation
gives a good estimate of a slowly time-varying observation error covariance matrix. Results
for the Lorenz ’96 model support these conclusions. Experiments 6L and 6K show that the
method also performs well when the covariance length-scale decreases with time.

We now consider how well the method performs when the magnitudes and ratios of the
forecast, uncorrelated and correlated error variances are varied. Experiments 7L,7K, 8L,
8K, 9L, 9K, 10L and 10K use the time-varying observation error covariance matrix used in
Experiments 5L and 5K with σ2

b , σ
2
D, σ

2
C all chosen to be one of 0.01, 0.1 or 1. In each of

these experiments we see that the assimilation is providing good estimates of the true state
and the correlated observation error matrix. This suggests that the initial magnitudes
and ratio of the forecast and observation errors does not affect the performance of the
method.

Finally we consider the case where the covariance structure in R varies more quickly with
time. To show how well the filter is performing we give the time-averaged analysis RMSE
and covariance RMSE in Tables 1 and 2 Experiments 11L and 11K. Again we see the
filter is performing well. We find that for Experiment 11L the covariance structure is
well estimated and closely resembles the truth. For Experiment 11K the estimate of the
correlation structure is not as accurate; however, the variance is well estimated and the
correlation length-scale is approximately correct (not shown).

5 Conclusions

For a data assimilation scheme to produce an optimal estimate of the state the error
covariances associated with the observations and background must be well understood and
correctly specified. As the observation errors have been found to be correlated and time-
dependent it is necessary to determine if the observation error covariance matrix can be
estimated within an assimilation scheme. In this work we have introduced an ensemble
transform Kalman filter with observation error covariance matrix estimation. This is an
ETKF where analysis and background innovations are calculated at each analysis time
step and the most recent set of these innovations is used to estimate the matrix R using
the DBCP diagnostic. This estimate of R is then used in the next assimilation step. The
method has been developed to allow a slowly time-varying estimate of the observation error
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covariance matrix to be calculated.

We showed it is possible to obtain a good estimate of R using the DBCP diagnostic.
We then showed that estimating R within the ETKF worked well, with good estimates
obtained, the ensemble spread maintained and the analysis RMSE reduced compared to
the case where the matrix R is always assumed diagonal. We also showed that the method
does not work as well where the observations are less frequent, although this may be
dependent on the model. However the method still produces a reasonable estimate of R,
maintains the ensemble variance and the time-averaged analysis RMSE is lower than where
a diagonal R is used.

We next considered a case where R varied slowly with time. We showed that the method
worked well where the true R was defined to slowly vary with time. The time-averaged
analysis RMSE was low and the ensemble spread was maintained. The estimates of the
correlation structure were good, suggesting that the method is capable of estimating a
slowly time-varying observation error covariance matrix. A case where the length-scale of
the observation error covariance varied more quickly was also considered, and the ETKFR
produced reasonable estimates of the observation error covariance matrix. We also showed
that the ability of the method to approximate the correlation structure was not sensitive to
the forecast error variances or the true magnitude of the observation error variance. This
suggests that the method would be suitable to give a time-dependent estimate of correlated
observation error. We note that the effectiveness of the method will depend on how rapidly
the synoptic situation and hence correlated error is changing and how often observations are
available. The correlated error will also be dependent on the dynamical system. For models
designed to capture rapidly developing situations, where representativity error and hence
correlated error is likely to change rapidly, assimilation cycling and observation frequency
within the assimilation is expected to be more frequent and hence more data is available
for estimating the observation error.
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Figure 1 – Rows of the true (solid) and estimated (dashed) covariance matrices a) Experi-
ment 1L. Observation error covariance RMSE: 0.002. b) Experiment 1K. Observation error
covariance RMSE: 0.010.
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Figure 2 – Rows of the true (solid) and estimated covariance matrices a) Experiment 2L.
Covariance calculated using the first 100 background and analysis innovations (dashed), obser-
vation error covariance RMSE: 0.007. Covariance calculated using the last 100 background and
analysis innovations (dot-dashed), observation error covariance RMSE 0.004. b) Experiment
2K. Covariance calculated using the first 250 background and analysis innovations (dashed),
observation error covariance RMSE 0.010. Covariance calculated using the last 250 background
and analysis innovations (dot-dashed), observation error covariance RMSE: 0.006.
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Table 1 – Details of experiments executed using the Lorenz ’96 model to investigate the
performance of the ETKF with observation error covariance estimation

Exp. True R Assimilation Obs Freq σ2

b
, σ2

D
, σ2

C
Time Av Covariance

No. Method (time steps) analysis RMSE
RMSE

1L SOAR + RI ETKF (R = diagRt) 5 0.1 0.115 0.005

2L SOAR + RI ETKFR (R0 = R
D) 5 0.1 0.110 0.004

3L SOAR + RI ETKF (R = diagRt) 30 0.1 0.065 0.008

4L SOAR + RI ETKFR (R0 = R
D) 30 0.1 0.063 0.008

5L Time dep. (α = −3 × 10−4, β = 3.6) ETKFR (R0 = R
D) 5 0.1 0.106 0.010

6L Time dep. (α = 3 × 10−4, β = 3.3) ETKFR (R0 = R
D) 5 0.1 0.108 0.006

7L Time dep. (α = −3 × 10−4, β = 3.6) ETKFR (R0 = R
D) 5 0.01 0.033 0.001

8L Time dep. (α = −3 × 10−4, β = 3.6) ETKFR (R0 = R
D) 5 1.0 0.384 0.094

9L Time dep. (α = −3 × 10−4, β = 3.6) ETKFR (R0 = R
D) 5 0.1,1.0,1.0 0.414 0.095

10L Time dep. (α = −3 × 10−4, β = 3.6) ETKFR (R0 = R
D) 5 1.0,0.1,0.1 0.107 0.009

11L Time dep. (α = 1 × 10−3, β = 3.6) ETKFR (R0 = R
D) 5 0.1 0.108 0.009

21



Table 2 – Details of experiments executed using the Kuramoto-Sivashinsky equation to inves-
tigate the performance of the ETKF with observation error covariance estimation

Exp. True R Assimilation Obs Freq σ2

b
, σ2

D
, σ2

C
Time Av Covariance

No. Method (time steps) analysis RMSE
RMSE

1K SOAR + RI ETKF (R = diagRt) 40 0.1 0.273 0.010

2K SOAR + RI ETKFR (R0 = R
D) 40 0.1 0.251 0.010

3K SOAR + RI ETKF (R = diagRt) 100 0.1 0.375 0.020

4K SOAR + RI ETKFR (R0 = R
D) 100 0.1 0.357 0.021

5K Time dep. (α = 3 × 10−4, β = 3.7) ETKFR (R0 = R
D) 40 0.1 0.255 0.008

6K Time dep. (α = −3 × 10−4, β = 4.0) ETKFR (R0 = R
D) 40 0.1 0.252 0.014

7K Time dep. (α = 3 × 10−4, β = 3.7) ETKFR (R0 = R
D) 40 0.01 0.060 0.001

8K Time dep. (α = 3 × 10−4, β = 3.7) ETKFR (R0 = R
D) 40 1.0 0.704 0.044

9K Time dep. (α = 3 × 10−4, β = 3.7) ETKFR (R0 = R
D) 40 0.1,1.0,1.0 0.703 0.080

10K Time dep. (α = 3 × 10−4, β = 3.7) ETKFR (R0 = R
D) 40 1.0,0.1,0.1 0.261 0.010

11K Time dep. (α = 4 × 10−4, β = 3.7) ETKFR (R0 = R
D) 40 0.1 0.252 0.036
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