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1 Introduction

In a moving mesh approach the unknowns are the domain and the solution.
The velocity-based local conservation method proposed in [1] uses local con-
servation. Two key issues need to be addressed, the integrity of the mesh
(avoiding tangling) and the positivity of the solution on the mesh (essential
for local conservation). A subsidiary issue is smoothness of the solution,
avoiding spurious oscillations that might spark off instability.
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The local conservation method can be summarised as follows: at each
time

1. obtain the Eulerian conservation velocity at each point of the domain,

2. integrate this velocity in time to deform the domain,

3. determine the solution on the new domain from Lagrangian conserva-
tion.

We call this method VMS (velocity, then mesh, then solution).
Previous work using this approach can be found in [8, 12, 1, 19, 2, 3, 15,

4, 14, 5, 6, 13, 10, 11, 17, 18]. However, using the above sequence numerically
it is difficult to control mesh tangling and retain positivity and smoothness
in the solution without requiring small time steps. Here we interchange the
second and third steps, solving a PDE for the solution on the moving mesh
prior to using Lagrangian conservation to construct the mesh.

The modified approach, called here VSM (velocity, then solution, then
mesh), can be stated as follows. At each time,

1. obtain the Eulerian conservation velocity at each point of a domain (as
for VMS),

2. integrate the rate of change of the solution following the motion to
generate the solution on the new domain (yet to be determined),

3. deduce the domain of the solution from Lagrangian conservation.

The moving PDE of step 2 can be solved numerically by a semi-implicit
scheme that satisfies a maximum/minimum principle (cf. [6]), admitting no
new extrema in the solution and preserving positivity of the solution between
extrema in a time step, thereby avoiding oscillations. The mesh is then
constructed a posteriori from the Lagrangian integral, preserving the node
ordering as a result of the positivity of the solution.

In this paper the VSM moving mesh method is first described for prob-
lems that conserve total mass, in section 2. Then, in section 3 the method
is generalised to non mass-conserving problems with prescribed boundary
fluxes. For the latter the (variable) total mass is inconsistent with local mass
conservation but, as in [1, 4, 6, 13, 11], the local mass conservation can be
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replaced by a normalised local conservation principle (normalised by the to-
tal mass) at the expense of carrying the additional normalising variable. The
generalisation parallels the mass-conserving case, using a modified velocity.

Numerical tests are carried out in section 4 which confirm the predictions
of the theory.

2 PDEs and local conservation

Consider the generic first-order-in-time-scalar PDE

ut = Lu (1)

for the function u(x, t), where Lu contains spatial derivatives of u, and let
the total mass

θ =
∫ b(t)

a(t)
u(χ, t) dχ

be constant in time.
A local form of conservation in a fixed frame is

ut + (uv)x = 0 (2)

where v is the Eulerian velocity, whilst an equivalent conservation law (as
long as u is positive) is the Lagrangian form∫

u(χ, t) dχ = c, (3)

where c is independent of time, for arbitrary limits on the integral. (The
equivalence can be shown using Leibnitz’ integral rule together with the
total mass conservation.)

Assuming an anchor point at which the flux uv vanishes (which we take
to be the origin of the spatial coordinate x), it follows from (1) and (2) that
if u > 0 the velocity at the point x is

v(x, t) = −1

u

∫ x

0
Lu(χ) dχ (4)

In particular, when Lu ≡ f(u)x, the velocity reduces to v(x, t) = −f(u)/u
(which may also be deduced from zero net fluxes at the moving nodes).
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The rate of change of u following the motion is

dû

dt
= ut + vux = −(uv)x + vux = −uvx (5)

using (2).
Introducing a moving coordinate x̂(x, t), the Lagrangian conservation law

(3) can be written (in the fixed frame) as

∫
u(x̂(χ, t), t)

∂x̂(χ, t)

∂χ
dχ,

independent of time for arbitrary (fixed) limits of integration. Hence

û(x, t)
∂x̂

∂x
= ĉ(x), (6)

say, is independent of t, where û(x, t) = u(x̂(x, t), t).
Let the moving coordinate x̂(x, t) be determined at any fixed time t0 by

the differential equation

∂x̂

∂t
= v(x̂, t), x̂(x, t0) = x

where v is given by (4). Then, putting ∂x̂/∂t = ẋ, from (4)

ẋ = v(x̂, t) = − 1

u(x̂, t)

∫ x̂(t)

0
Lu(χ) dχ = −1

u

∫ x̂(t)

0
Lu(χ) dχ (7)

since u(x̂, t) has the same values as u(x, t).
The rate of change of û following the motion, from (5) and (7), is

u̇ = −u(x̂, t)v(x̂, t)x = u(x̂, t)
∂

∂x

{
1

u(x̂, t)

∫ x̂(t)

0
Lu(χ) dχ

}

= u(x̂, t)
∂

∂x

{
1

û(x̂, t)

∫ x̂(t)

0
Lu(χ) dχ

}
(8)

Examples are
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• the mass conservation law ut + (uq(u))x = 0, where Lu = −(uq(u))x,
for which equations (6), (7) and (8) can be written

û
∂x̂

∂x
= ĉ(x), ẋ = q(u), u̇ = −u q(u)x

• the nonlinear diffusion equation (1) where Lu = (upx)x, for which
equations (6), (7) and (8) can be written

û
∂x̂

∂x
= ĉ(x), ẋ = −px, u̇ = u pxx

or, if p is a function of u only,

û
∂x̂

∂x
= ĉ(x), ẋ = −p′(u)ux, u̇ = u{p′(u)ux}x (9)

• the more general nonlinear diffusion equation (1) with Lu = (D(u)ux)x,
for which equations (6), (7) and (8) become

û
∂x̂

∂x
= ĉ(x), ẋ = −D(u)

u
ux, u̇ = u

(
D(u)

u
ux

)
x

(10)

In the VSM method equation (8) is solved together with (6) for the two
unknown parametric functions x̂(x, t) and û(x, t).

In the next section we discuss numerical schemes for the PDE (5).

2.1 Numerical schemes for û

The domain is discretised using nodes xi (i = 1, . . . , N) (not necessarily
equally spaced) with function values ui. Initially, the ui are sampled from
the initial condition at the nodes.

The nodal velocities vi are obtained from a discretisation

vi = − 1

ui

∫ x̂i(t)

0
Lu(χ) dχ

of (7), where the integral is evaluated using quadrature. A first-order-in-time
explicit scheme for the PDE (5) is then

ûni = ûi exp {−∆t (vx)i} (11)
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where ∆xi = xi+1/2− xi−1/2 and the superfix n indicates the next time level.
If the spatial approximation (vx)i is positive ∀i the amplification factor in
(11) lies between 0 and 1 so that ûi remains positive and decreases with n.
Moreover, if the spatial approximation (vx)i increases with i then ûi decreases
without oscillations. In general (11) may not avoid oscillations, however.

A semi-implicit scheme that does control oscillations is as follows.

2.1.1 A semi-implicit scheme

On the moving mesh a first-order-in-time explicit scheme for the PDE (5) is

ûni − ûi
∆t

= − ûi
∆xi

(
vi+1/2 − vi−1/2

)
(12)

where ∆xi = xi+1/2 − xi−1/2 and vi is given by (7). The values at the half
points are simple averages.

By comparison with (12) a consistent first-order-in-time semi-implicit
scheme for the PDE (5) at interior nodes is (dropping the hats)

uni − ui
∆t

= − ui
∆xi

{
vi+1/2

(ui+1 − ui)n

(ui+1 − ui)
− vi−1/2

(ui − ui−1)n

(ui − ui−1)

}
(13)

((ui±1 − ui) 6= 0), noting that the quotients introduced into (12) are O(∆t)
approximations. If either of (ui±1 − ui) = 0 no such modification is made.
(Values of uni at the boundaries are obtained from boundary conditions or
local explicit schemes.)

Putting ∆ui+1/2 = ui+1 − ui and ∆ui−1/2 = ui − ui−1, the scheme (13)
can be written

uni − ui = κR(uni+1 − uni )− κL(uni − uni−1) (14)

where the coefficients are

κR = −ui∆t
∆xi

(
v

∆u

)
i+1/2

, κL = −ui∆t
∆xi

(
v

∆u

)
i−1/2

(15)

If the ratios (v/∆u)i±1/2 (or products (v∆u)i±1/2) are both negative, so
that the κL, κR are both positive, the uni in (14) satisfy an extremum prin-
ciple at each time step, admitting no new local extrema and lying between
their values on the boundaries. Provided that the boundary values are non-
negative the uni remain non-negative.
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Similarly, if the ratios vi±1/2/∆ui∓1/2 (or products vi±1/2∆ui∓1/2) are both
positive, the same extremum principle holds at each time step when the
terms (ui+1−ui)n and (ui−ui−1)n in (14) are interchanged (still maintaining
consistency with the PDE (5)). The scheme then becomes

uni − ui = λR(uni+1 − uni )− λL(uni − uni−1) (16)

where

λR = −κL =
ui∆t

∆xi

(
vi−1/2

∆ui+1/2

)
λL = −κR =

ui∆t

∆xi

(
vi+1/2

∆ui−1/2

)
(17)

2.1.2 Example

For diffusive PDEs of the form ut = (up(u)x)x, the velocity from (9) is
v = −p(u)x, so from (11) a first-order-in-time explicit scheme for the PDE
(5) is

ûni = ûi exp {∆t (p(u)xx)i}

The velocity can also be written v = −p′(u)ux which can be approximated
as

vi−1/2 = − (p′(u))i−1/2

(
ui − ui−1
xi − xi−1

)
,

so a first-order-in-time semi-implicit scheme of the third of (10) for ui is

uni − ui
∆t

=
ui

∆xi

{
(p′(u))i+1/2

(uni+1 − uni )

(xi+1 − xi)
− (p′(u))i−1/2

(uni − uni−1)
(xi − xi−1)

}
(18)

which can also be derived immediately from (9). Provided that p′(u) is
positive, by the argument of the previous section the extremum principle
ensures that no new local extrema in uni are generated and that the uni remain
bounded between their maximum and minimum values on the boundaries.

2.1.3 Special points

At (isolated) points where the κL, κR of (15) or the λL, λR of (17) are of
opposite sign (as for example in fourth order nonlinear diffusion [10]), the
argument fails because the necessary strict convexity of the right hand side of
(14) or (16) is lost. However, these points, xI say, may be regarded as internal
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boundaries, between which the schemes (14) or (16) hold. A separate scheme
is required at the points such as the explicit scheme (11).

At a reflection point xr, say, where the vr±1/2 and ∆ur±1/2 change sign
simultaneously (and hence the κL, κR or the λL, λR do not change sign), unr
can be taken from (14) or (16). The values of uni calculated from the system
(14) or (16) then remain bounded but relinquish monotonicity at xr, risking
oscillations. Specifically, from (14) the calculated values unr satisfy

unr =
ur + κLu

n
r−1 + κRu

n
r+1

1 + κL + κR

where the right hand side is a positive average of adjacent u values and
hence lies in their support. When ∆t is small (so that the κ’s are small) unr
is close to ur and when ∆t is large it is close to a positive average of unr−1
and unr+1, taking only values in between, so there is no oscillation. A similar
argument applies to (16). Where the derivative of the profile is very small,
perturbations of the ui might lead to oscillations that grow: these however
can be controlled by a mild regularisation in which the coefficients κL, κR or
λL, λR are increased by a small positive number ε, equivalent to an ε change
in the diffusion coefficient in (14) together with the addition of an ε-sized
Laplacian viscosity term.

2.1.4 Recovering the mesh

Once the uni have been found from (14) or (16), the mesh can be recovered
from the interval lengths ∆±xni derived from the Lagrangian conservation
law (6) in the approximate form

uni ∆±xni = ∆±ci (19)

where ∆±xni is a one-sided difference. The masses ∆±ci are independent of
time and therefore known from initial conditions. Using an anchor point, xA
say, the xni can be constructed from these one-sided intervals through the
recursion

xni = xA +
i−1∑
j=A

∆±xnj = xA +
i−1∑
j=A

∆±cj
unj

(20)

Positivity of the uni ensures monotonicity of the xni .
We note that equation (19) reproduces the same approximation at time

t as at the initial time. In particular, if the ui are sampled at the nodes at
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the initial time, equation (19) carries that approximation forward to the new
time.

The full algorithm is as follows.

Algorithm 1

Given xi and ui at the initial time, evaluate the mass constants ci from
(19).

Then at each time step, provided that the κL, κR or the λL, λR are of the
same sign,

1. calculate the vi from a discretisation of (7)

2. determine the solution uni on the new mesh from (11) or from (14)/(16)

3. obtain the new interval lengths ∆xni from (19)

4. construct the new mesh xni using the recurrence (20)

The schemes (14) and (16) are unconditionally stable and admit no new
oscillations in uni in a time step. Moreover, provided that the boundary
conditions are non-negative, monotonicity of the xni is assured. The overall
scheme is illustrated in the numerical results section 4 below.

The VSM approach in this paper improves on the VMS schemes described
in [13] or [6] in that the algebraic equation (19) linking the mesh and the
solution determines the ∆xni from the uni , rather than the other way round,
avoiding the possible oscillations in uni generated by those in ∆xni .

3 Non mass-conserving problems

The argument in section 2 applies only to problems with constant total mass,
allowing consistent local mass conservation. In this section we present a
generalisation for problems with varying total mass.

For problems that do not conserve total mass but have prescribed fluxes
φa, φb at the boundaries, we may use a normalised form of local conservation.
Let

θ(t) =
∫ b(t)

0
u(χ, t) dχ (21)
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be the total mass (varying with time) and introduce a normalised solution
u(x, t) = u(x, t)/θ(t). A normalised mass conservation principle (cf . (3)) is
then ∫

u(χ, t) dχ =
1

θ(t)

∫
u(χ, t) dχ = c(x), (22)

say, independent of t, which is consistent with the constant total relative mass
whose value is unity from (21) and (22). The constants c(x) are determined
from the initial conditions.

The fixed-domain conservation law for u(x, t) is

(u)t + (u v)x = 0 (23)

where v is the Eulerian velocity (cf. (2)). As in section 2, assuming an anchor
point at which the flux uv vanishes (which we may take as the origin of the
spatial coordinate x), it follows from (23) that the induced velocity v is

v(x, t) = −1

u

∫ x

0
(u)t dχ (24)

(cf . (4)). Since for the PDE ut = Lu,

(u)t =
(
u

θ

)
t

=
1

θ

(
ut −

θ̇

θ
u

)
=

1

θ

(
Lu− θ̇

θ
u

)
=

1

θ
Lu− θ̇

θ
u,

the velocity (24) can be written

v(x, t) = −1

u

∫ x

0

(
1

θ
Lu(χ)− θ̇

θ
u

)
dχ = −1

u

∫ x

0
Lu(χ) dχ+

c(x)

u
θ̇ (25)

using (22).
The rate of change θ̇ of the total mass is given from u and the prescribed

boundary fluxes φ by Leibnitz’ integral rule in the form

θ̇ =
d

dt

∫ b(t)

0
u(χ, t) dχ =

∫ b(t)

0
ut dχ+ [uv]

b(t)
0 =

∫ b(t)

0
Lu(χ) dχ+ [φ]

b(t)
0 (26)

The rate of change of u following the motion is

dû

dt
= ut + vux = −(uv)x + vux = −uvx (27)

using (23).
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Introducing a moving coordinate x̂(x, t), the normalised Lagrangian con-
servation law (22) can be written as∫

u(x̂(χ, t), t)
∂x̂(χ, t)

∂χ
dχ

is independent of time for arbitrary (fixed) limits of integration. Hence

û(x, t)
∂x̂

∂x
= ĉ(x), (28)

say, independent of time, where û(x, t) = u(x̂(x, t), t). The values of ĉ(x) are
determined from initial data.

Suppose that the moving coordinate x̂(x, t) is defined at any fixed time
t0 by

∂x̂

∂t
= v(x̂, t), x̂(x, t0) = x,

Then, putting ∂x̂/∂t = ẋ, from (25)

ẋ =
∂x̂

∂t
= −1

û

∫ x̂(t)

0
Lu(χ) dχ+

c(x̂)

û
θ̇ (29)

The rate of change of u following the motion, from (27) and (29), is

u̇ =
∂û

∂t
= −uẋ = û

∂

∂x

{
1

û

∫ x̂(t)

0
Lu(χ) dχ− c(x)

u
θ̇

}
(30)

In the VSM method equation (30) is solved, together with (28) and (26),
for the unknown parametric functions û(x, t), x̂(x, t), and θ(t), where c(x)
is determined by (22) at the initial time. The un-normalised solution u is
obtained from u = u/θ(t), where θ(t) is found by integration of (26).

Example

In the case of the often-used scalar time-dependent PDE

ut + fx(u) = s

where f(u) is a nonlinear flux function (depending only on u and its spatial
derivatives) and s is a specified source term (for which Lu = −f(u)x + s),
the velocity (29) becomes

v(x, t) =
f(u)−

∫ x
0 s dχ+ c(x)θ̇

u
(31)
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where, from (26),

θ̇ = [−f(u) + φ]b0 +
∫ b

0
s dχ (32)

Mass is not conserved but we are assuming that the boundary fluxes φ are
known, so θ̇ depends only on u and s.

We now consider numerical schemes for (30).

3.1 Numerical schemes for û

Approximate nodal velocities vi are first obtained from a discretisation

vi = − 1

ui

∫ xi

0
Lu(χ) dχ+

ci
ui
θ̇ (33)

of (25), where ci are the mass constants determined from initial data using
(22), and where θ̇ is given from (32) by

θ̇ =
∫ xN

0
Lu(χ)dχ+ [φ]xN0 , (34)

the integrals being evaluated by quadrature.
Numerical schemes for (27) and (28) are essentially the same as in sections

2.1 and 2.1.4, with u replaced by u and v replaced by v. Thus a first-order-
in-time explicit scheme for the PDE (27) that maintains the sign of u is
(dropping the hats)

uni = ui exp {−∆t (vx)i} (35)

while a similar first-order-in-time explicit scheme for the ODE (26) is

θn = θ exp
(
∆t θ̇/θ

)
(36)

If the spatial approximation (vx)i is positive ∀i the amplification factor in (35)
lies between 0 and 1, so ui remains positive and decreases with n. Moreover, if
the spatial approximation to (vx)i increases with i then ui remains monotonic,
although (35) will not avoid oscillations in general.

A semi-implicit scheme for ui that does control oscillations is

uni − ui
∆τ

= − ui
∆xi

{
vi+1/2

(ui+1 − ui)n

(ui+1 − ui)
− vi−1/2

(ui − ui−1)n

(ui − ui−1)

}
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((ui±1 − ui 6= 0)), which can be written

uni − ui = κR(uni+1 − uni )− κL(uni − uni−1) (37)

where the coefficients are

κR = −ui∆t
∆xi

(
v

∆u

)
i+1/2

, κL = −ui∆t
∆xi

(
v

∆u

)
i−1/2

(38)

Once uni and θn have been determined, the approximate solution in the
moving frame uni = θn uni can be obtained and the interval lengths ∆±xni at
the forward time step can be found from the Lagrangian form of normalised
conservation in the approximate form

uni ∆±xni = ∆±ci (39)

(see (19)) with the ∆±ci obtained from initial data (omitting the hats). Us-
ing the anchor point, the interval lengths ∆±xni from (19) can be used to
reconstruct the xni through the recursion (20) where the ∆±ci (= θ∆±ci) are
their initial values.

We note that positivity of the ui ensures monotonicity of the xi.

The algorithm is as follows.

Algorithm 2

Given initial values ui and xi evaluate the initial total mass θ from (21)
and the normalised mass constants Ci from (22). Then, at each time step,
provided that the κL, κR or the λL, λR are of the same sign,

1. calculate the vi from (25) and θ̇ from (26)

2. determine the uni from (37)

3. calculate θ from (36)

4. derive the uni from the relation u = u/θ and obtain the interval lengths
∆xni from (39) with mass constants c±i calculated from initial data

5. construct the xni using the recurrence (20).

13



The overall scheme is stable and consistent. If the initial and boundary
conditions are such that the uni determined from (35) or (37) remain positive,
monotonicity of the xi is assured.

The scheme (37) is unconditionally stable and admits no new oscillations
in uni in a time step.

4 Numerical tests

We illustrate the properties of Algorithms 1 and 2 applied to a standard
nonlinear diffusion problem (the porous medium equation.

4.1 A mass conserving problem

The nonlinear porous medium equation (PME) with a quadratic diffusion
coefficient,

ut = (u2ux)x (a(t) < x < b(t) (40)

where u = 0 on the boundaries is mass-conserving and has the exact self-
similar solution [9, 16]

u(x, t) =
1

2t1/4

{
1−

(
x

t1/4

)2
}1/2

+

(41)

in the expanding region −t1/4 < x < t1/4, where the suffix + indicates the
positive part of the argument. Note that the derivative of the solution is
unbounded at x = ±t1/4, so the problem is numerically challenging. We
use this problem to demonstrate the stability and accuracy properties of
Algorithm 1.

At the initial time, t = 1 say, the initial condition is taken from the
function (41) as

u(x, 1) =
1

2
(1− x2)1/2

Due to the reflective symmetry x = 0 is the obvious anchor point. The mass
constants are therefore

ci =
1

2

∫ xi

0
(1− χ2)1/2dχ
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The problem is of the form ut = (p(u)ux)x with p(u) = 1
2
u2, so from (9)

the velocity is v = −1
2
(u2)x. The velocity is approximated as

vi = −1

2

(u2i+1 − u2i−1)
(xi+1 − xi−1)

The explicit scheme for ui for this problem is (11) and the semi-implicit
scheme is (18). Although the ui are not monotonic at the origin, the κL, κR
of (38) are always of the same sign, so the internal boundary condition can
be evaluated from the semi-implicit scheme (losing monotonicity at the max-
imum).

Once the approximate ui has been obtained, the mesh is obtained from
(20) using one-sided differences.

Algorithm 1 of section 2.1 is run for 40 interior points. Five increasing
∆t’s are used, ∆t = 0.5, 0.25, 5, 25, 50, in reaching the fixed time t = 151,
progressively forfeiting accuracy as ∆t increases, as monitored by the relative
error in the l2 norm of the solution and the l∞ norm of the free boundary,
(see Table 1).

The solution is always positive and the mesh monotonic (no tangling).

∆t Relative error in u Relative error in xN
0.5 0.0016 0.0016
2.5 0.01057 01060
5 0.353 0.336
25 0.5218 1.0113
50 0.7405 2.8540

Table 1: Relative errors in u and xN at t = 151 from the solution with 40 nodes
for the PME (40).

Figure 1 compares the VSM solutions for the PDE (40) at t = 16 using
a time step ∆t = 0.5 with the corresponding VMS solutions (see section
1 or [13, 11]). It is apparent that the oscillations in the VMS profile are
completely avoided in the VSM profile.

4.2 Non mass-conserving problems

In order to test the algorithm for non mass-conserving problems with pre-
scribed fluxes we use the simplest PME with either a positive or negative
source term.
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Figure 1: Solutions using (a) the VMS and (b) the VSM methods for the
problem (40) at t = 16 taking time steps ∆t = 0.5 with initial conditions
sampled from (41).

4.2.1 An accumulating non mass-conserving problem

The non mass-conserving problem

ut = (uux)x +
2

9
(−t < x < t) (42)

with u = 0 and zero fluxes on the boundary of the expanding interval has
the self-similar solution (see Appendix)

u(x, t) =
1

6t

(
1− x2

t2

)
(43)

We use this problem to demonstrate the stability and accuracy properties
of Algorithm 2. Initial conditions are taken from the self-similar solution (43).

At the initial time, t = 1 say, the initial condition is

u(x, 1) =
(
1− x2

)
/6, (44)

taken from (43). The initial total mass, by (21), is therefore

θ(1) =
1

6

∫ 1

−1
(1− χ2) dχ =

2

9
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and hence u(x, 1) = u(x, 1)/θ(1) = (3/4) (1− x2).
Due to the symmetry about the origin, x = 0 is taken as the anchor point.

The normalised mass constants, from (22), are thus

ci =
3

4

∫ xi(1)

0

(
1− χ2

)
dχ =

3

4
xi(1)− 1

2
xi(1)3

The xi are initially equally spaced (although this is not essential).
The rate of change of the total mass, from (34) and the boundary condi-

tions, is

θ̇ =
∫ xN

0

2

9
dχ =

2

9
xN (45)

and hence from (33) the velocity (relative to the anchor point) is

vi =
−ui(ux)i −

∫ xi
0 (2/9)dχ+ ci θ̇

ui
= −(ux)i −

2

9

xi
ui

+
2

9

ci xN
ui

(46)

The explicit scheme for ui is (35) with vi given by (46).
The semi-implicit scheme for ui is (37) with boundary conditions u = 0

at the free boundaries. Although the values of ui are not monotonic at the
origin the κL, κR of (38) are always of the same sign, so the internal boundary
condition can be obtained from the semi-implicit scheme (losing monotonicity
at the maximum).

The total mass θ is advanced in time by the explicit scheme (36) with θ̇
given by (45). The mesh is then calculated from (20) with one-sided differ-
ences.

Algorithm 2 of section 3 is run for 40 interior points. Four increasing ∆t’s
are used, ∆t = 0.1, 0.5, 1, 5, in reaching the fixed time t = 51, progressively
forfeiting accuracy as ∆t increases, as monitored by the relative error in the
l2 norm of the solution and the l∞ norm of the free boundary. (see Table 2).

Figure 2 shows the approximate solutions (circles) from t = 1 at time
intervals 10 up to t = 50 using ∆t = 1, together with the exact solution
(crosses).

The solution is always positive and the mesh monotonic.

4.2.2 A non mass-conserving problem with evaporation

The non mass-conserving problem

ut = (uux)x −
4/9

t4
(−t−1 < x < t−1) (47)
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∆t Relative error in u Relative error in xN
0.1 0.01675 0.0000053
0.5 0.07785 0.01829
1 0.07915 0.02864
5 0.5004 37.198

Table 2: Relative errors in un and xnN at t = 51 for the VSM method applied to
the PDE (42) with initial condition (44)), using 40 nodes and taking time steps
∆t = 0.1, 0.5, 1, 5.

x
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u
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Figure 2: VSM solutions (circles) and exact solutions (crosses) of the problem
(42) with initial condition sampled from (43) at time intervals 10 (bottom to
top) from t = 1 to t = 51 using ∆t = 1.

with u = 0 on the boundary of the contracting interval has the self-similar
solution

u(x, t) =
1

6

(
t−3 − x2

t

)
(48)

(see Appendix). We use this equation to demonstrate the stability and ac-
curacy properties of Algorithm 2 for a negative source term.

Initial conditions are taken from (48) at t = 1. Due to the symmetry
about the origin, x = 0 is taken as the anchor point. At the initial time,
t = 1 say, the initial condition u(x, 1), total mass θ(1), normalised solution

18



u(x, 1), and mass constants ci, are the same as in section 4.2.1.
The xi are initially equally spaced (although this is not a requirement).
From (34) and the boundary conditions, the rate of change of the total

mass is

θ̇ = −
∫ xN

0

4

9
t−4dχ = −4

9
t−4xN (49)

and hence the velocity, from (31) and (32), is

vi =
−ui(ux)i +

∫ xi
0 (4/9)t−4dχ− Ciθ̇

ui
= −(ux)i +

4/9

t4
xi
ui
− 4/9

t4
Ci xN
ui

(50)

The explicit scheme for ui is (35) with vi given by (50). The semi-implicit
scheme for this problem is (37). The λL, λR are not of opposite sign for the
parameters studied here so the semi-implicit scheme can be used to compute
u0 at the origin.

The total mass θ is found from (36) with θ̇ given by (49). The mesh is
then obtained from (20) with one-sided differences.

Algorithm 2 of section 3 is run for 40 interior points. Four increasing
∆t’s are used, ∆t = 0.005, 0.01, 0.05, 0.1, in reaching the fixed time t = 6,
forfeiting accuracy as ∆t increases monitored by the relative error in the l2

norm of the solution and the l∞ norm of the free boundary (see 3).

∆t Relative error in u Relative error in xN
0.005 0.01462 0.01462
0.01 0.05061 0.01721
0.05 0.04672 0.01489
0.1 0.07789 0.06969

Table 3: Relative errors in un and xnN at t = 6 from the VSM method applied
to the PDE (47) with initial condition (44), using 40 nodes and taking time steps
∆t = 0.005, 0.01, 0.05, 0.1.

Figure 3 shows the approximate solutions (circles) together with the exact
solution (crosses) using ∆t = 0.1 from t = 1 to t = 1.5.

The solution is always positive and the mesh monotonic.
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Figure 3: VSM solutions (circles) and exact solutions (crosses) of the PME
problem (47) with a negative source term, with initial condition sampled
from (48), at time intervals ∆t = 0.1 (top to bottom) from t = 1 to t = 1.5.

5 Conclusions

In this paper we have studied a velocity-based moving mesh scheme based
on local conservation for scalar one-dimensional time-dependent PDEs with
moving boundaries. We showed first that for mass-conserving problems there
exists a semi-implicit moving mesh scheme (VSM) based on conservation
that preserves positivity and monotonicity of the solution and avoids mesh
tangling for arbitrarily large tme steps. The method was then generalised to
problems that do not conserve total mass but for which boundary fluxes are
prescribed.

Analytically, a velocity was derived from local conservation and used to
obtain a PDE for the solution on the moving domain following the motion.
The deformation of the domain was then determined a posteriori from this
solution using the Lagrangian form of local conservation.

Numerically, given the mesh and solution at an initial time, the veloc-
ity was approximated and the PDE following the motion solved by a semi-
implicit scheme possessing an extremum principle. The mesh was then ob-
tained (algebraically) from a simple quadrature of the Lagrangian conserva-
tion principle.
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The sequence (VSM) of calculating the (V)-elocity, solving for the (S)-
olution, and then recovering the (M)-esh differs from the conservation method
published in the literature (see [13] and references therein), giving improved
stability through the positivity and monotonicity-preservation properties for
arbitrarily large time steps.

In section 2, devoted to problems conserving total mass, a local conser-
vation principle was used to obtain a generalised Eulerian velocity (4) which
was then used to derive the time-dependent PDE (5) for the solution on the
moving domain. The semi-implicit schemes (14) and (16) were then con-
structed which preserved positivity and monotonicity of the solution and,
when substituted into an (approximate) form of conservation law (19), pre-
served monotonicity of the nodes for any time step (see Algorithm 1).

In section 3 the method was generalised to non mass-conserving prob-
lems using a normalised local conservation principle. A generalised Eulerian
velocity (31) was used to derive the time-dependent PDE (30) following the
motion for the normalised solution on the moving domain, while the to-
tal mass was computed through its time rate of change (26). Semi-implicit
schemes (38) and (37) were derived for the normalised solution which pre-
served positivity and monotonicity of the normalised solution for any time
step. (The normalised solution diffuses as in the mass-conserving case but
the solution itself is capable of additional variation.) When used with the
approximate normalised Lagrangian conservation law, monotonicity of the
nodes was preserved (see Algorithm 2.)

Numerical tests on the two algorithms were carried out in section 4 on
simple nonlinear diffusion problems with prescribed fluxes having analytic
solutions, first for a non-trivial mass-conserving nonlinear diffusion problem
(a porous medium equation with a quadratic diffusion coefficient), and then
for two non mass-conserving nonlinear diffusion problem with growing or
shrinking solutions. The solution was always positivity preserving and the
mesh remained untangled.

The velocity-based moving mesh VSM algorithms in this paper represent
an advance on the VMS methods used previously [8, 14, 5, 6, 13, 10, 7, 11, 17]
in that they preserve positivity of the solution and monotonicity of the mesh
for arbitrary time steps. However, they are only first-order accurate in tine,
so care is required in their use.

The extension to multidimensions is planned. The calculation of the
velocity v in multidimensions has been considered elsewhere (see e.g. [1, 4])
in both finite diffeernce and finite element contexts. The PDE following the
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motion (5) generalises to
ut = −u∇ · v

In a finite difference approach the ∇ · v term may be approximated at any
point in a mesh of triangles by a linear sum of values of a velocity potential
φ at adjacent nodes. By introducing quotients of differences in u into this
equation a second order parabolic PDE for u can be created which admits
a semi-implicit system with a solution that possesses a positive averaging
property. Positive triangle areas can be then be determined from the dis-
crete Lagrangian form of the conservation principle. Although these areas
do not define the mesh uniquely (as they do in the one-dimensional case) an
approximate mesh can be constructed that avoids mesh tangling by main-
taining the signs of the triangle areas.

Appendix: Similarity solutions for the PME with source terms

Let the function u(x, t) have the form (ansatz)

u(x, t) =
1

6
tγ(1− ξ2), ξ =

x

tβ
(51)

Differentiation gives

ut =
1

6
γtγ−1(1− ξ2) +

1

6
tγ(−2ξξt) = γ

1

6
tγ−1(1− ξ2) +

1

3
tγ−1βξ2,

ux =
1

6
tγ(−2ξξx) = −1

3
tγ−βξ,

uux = − 1

18
t2γ−βξ(1− ξ2) = − 1

18
t2γ−βξ +

1

18
t2γ−βξ3,

so that

(uux)x = − 1

18
t2γ−2β +

1

6
t2γ−2βξ2,

Mutual scale-invariance of ∂tu and ∂x(u∂xu) holds if β = 1
2
(1 + γ).

Thus

ut − (uux)x =
1

6
γtγ−1(1− ξ2) +

1

3
tγ−1βξ2 +

1

18
tγ−1 − 1

6
tγ−1ξ2

=
1

6
tγ−1{γ − γξ2 + 2(γ + 1)ξ2 +

1

3
− ξ2}

22



and hence (51) is a self-similar solution of the inhomogeneous scale-invariant
partial differential equation

ut − (uux)x =
1

6
tγ−1

(
γ +

1

3

)
for general γ, where β = 1

2
(1 + γ).

If γ = 1 then β = 1, so ξ = x/t and

u(x, t) =
1

6

(
t− x2

t

)

is a self-similar solution of the partial differential equation

ut = (uux)x +
2

9

in the expanding interval (−t < x < t).
If γ = −3 then β = −1, so ξ = x/t−1 and

u(x, t) =
1

6

(
t−3 − x2

t

)

is a self-similar solution of the partial differential equation

ut = (uux)x −
4/9

t4

in the contracting interval (−t−1 < x < t−1).
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